
P2.4
ADVERSE WEATHER AND AIR TRAFFIC DELAYS

Dave Rodenhuis*
FAA, ATO-R, System Operations Services, ATCSCC, Herndon, VA

1. INTRODUCTION

Most commercial flights (80%) reliably deliver
passengers and cargo on time and within a small
fraction of the en route time. Of the remaining 20%, it is
widely recognized that about 70% of the delays,
diversions and cancellations (DDCs) are related,
somehow, to adverse weather.

Only during the past few years have the limitations on
capacity of the entire National Airspace System (NAS)
become apparent when faced with the simultaneous
and conflicting interests of air traffic and hazardous
weather.  This, compounded by the traditional methods
of traffic management, limitations of space and runway
orientation at congested terminals, and the inability to
fully utilize uncertain weather forecasts has led to
several studies of the impact of adverse weather on
traffic delays.  For example, Callaham, et.al., 2001; and
Post, et.al., 2002.

The objective of our work is first, to capture the
relationship between adverse weather and the DDCs.
Armed with this information we hope to define a
“weather index” and it’s “climatology” so that cause of
current traffic delays could be determined.  When this
correlation is fully documented, the value of traffic
management and the value of proposed changes and
investments in the NAS could be distinguished from the
variable influence of the weather itself.

2. ADVERSE WEATHER AND DELAYS

Adverse weather influences the volume of traffic Arrival
Acceptance Rate, AAR) at terminals and accounts for a
substantial fraction of system delays that are observed.
This accounting depends on the capacity and facilities
of each terminal that is always regarded as a constant,
but is different at each terminal.
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Adverse weather also affects ground operations, and
that is usually included as one of the limiting conditions
in operational capacity of the terminal.  However, after
exceptional events (eg, snow or freezing rain), impacts
on airport capacity may be substantial and sustained,
even though current weather conditions may be
excellent.

Finally, hazardous weather that is encountered en route
is responsible for another fraction of delays, since the
federal traffic management system, the commercial
traffic dispatch procedures, and the pilot always operate
to maintain the safest operating conditions.  However
this concern for safety comes with a cost; it leads
inevitably to traffic delays, diversions, and cancellations
(DDCs).

3. METHODOLOGY

This paper is a report on three methods currently under
investigation.

3.1 TRAFFIC MODEL

The objective is the determination of the weather
constraints on the normal flow of en route traffic and is
supported by the MITRE Corporation Center for
Advanced Aviation Systems Development, CAASD
(J.Strouth, 2004).

A prototype decision support tool, the CAASD Analysis
Platform for En Route (CAPER) is used to capture and
archive data for subsequent analysis.  Specifically, for
each sector in the NAS, at 15-minute intervals
throughout the day, CAPER collects:

•  the percentage of each sector in the NAS that is
covered by weather (NOWRAD levels 1 through 6)

•  the total number of aircraft that were predicted by
the CAPER trajectory modeler to transit each sector
in the 15 minute period at 1 to 6 hours prior to the
15 minute period.  That is, if t is the current 15-
minute period, the predictions are captured at t-1
hour, t-2 hours, etc.  These predictions indicate the
intended flow of traffic through the sectors.

•  the total number of aircraft actually transiting each
sector in the 15 minute period

The resulting dataset enables analysis that provides
insight into the following questions:



•  How much weather – and at what level – does it
take to impact the intended flow of traffic in the
NAS?

•  How much is the intended flow impacted by
weather?

•  Can a correlation be seen in the percentage of
weather coverage and a reduction in the actual
levels of traffic?

•  Can the degree to which traffic levels are
constrained be quantified in such a way that the
effects of weather can be normalized, allowing
comparative analysis of NAS performance over
time without concerns about the varying effects of
weather?

Additionally, the dataset displays the effects of weather
with another tool, NAS Operational Map Display
(NOMAD).  NOMAD allows users to visualize the
changing levels of weather coverage over time, as well
as changes in the actual and predicted levels of traffic,
both in chart form and geographically (Fig. 1)

Figure 1 - An example of a NOMAD display of weather
constraints according to sector within the CONUS on
June 1, 2004.  The color scale defines the fractional
coverage of convection from national radar coverage
(defined in the lower right corner).

These data sets are the basis for subsequent analysis
and quantitative understanding of weather constraints
on en route traffic.

3.2 WEATHER INDEX ANALYSIS

A second approach was taken by Wine (2004) and has
been used by several others.  However, Wine classified
observed terminal weather into traffic-sensitive
categories ranging from none (no influence) to 4 (severe
impact).  The classification is applied first to the
traditional weather variables:  weather, weather
intensity, ceiling, visibility and wind speed.
Subsequently, selected observed traffic parameters are

included as surrogates for adverse weather:  delays,
excess en route miles, and Arrival Acceptance Rates
(AARs) at terminals. These data are categorized
according to the weighted classification and compared
to NAS delay parameters.  An example of the results is
shown is Figure 2.

Figure 2 - Example of the impact of a weather index
(Wein, 2004) on departure delays.

Although the correlation of this weather-traffic index has
not yet been computed, it is expected to be significant.
However, the most important en route parameter
(thunderstorms) is included implicitly in station data, not
with (for example) precipitation coverage or lightning
strike information.

Several other investigators have also obtained results
by taking this intuitive approach to discovering a
sensitive weather index.  For example, Callaham, et.al.
(2001) obtained a correlation of 0.65 using an index,
WITI (Weather Impacted Traffic Index).  Post, et.al.
used lightning data to compute a weather index that
resulted in a correlation of 0.76 with traffic delays.
Recently, Liles (2004a,b) computed a weather index for
each major terminal and correlated terminal delays at a
level of 0.8.

The approach of Wine and previous authors depends on
their individual insight into the leading weather elements
that are responsible for delays.  Their relative success
can be measured by a comparison of correlation with
the DDCs.

3.3 EFFICIENCY MODEL

A third approach is to conceive a rational model for the
behavior of traffic and adverse weather, and let the
empirical data deduce the relationship.  An efficiency
model is:

E S
 H + W  = constant (1)

Where E = efficiency = 1 - δ/N
S = absence of errors = 1 - ε/M
W = a weather parameter (W=0 indicates no

weather influence)



H = an empirical constant that relates E and S
when W = 0.

N = number of actual system operations
M = N – number of cancellations

and the constant is a bulk system parameter ( C ) that
specifies the level of technology and the methodologies
of national traffic management being used.

For this investigation we choose to simplify the
expressions for E and S,

ε  = sum of operational errors and operational
deviations in the NAS

δ =  sum of delays, deviations, and
cancellations in the NAS,

H = 1

This concept states that increases in efficiency will be
accompanied by an increase in errors (decrease in S).
However, improvements in technology (represented by
C, the bulk system constant) will also improve the
efficiency under the same weather conditions without,
necessarily, increasing errors.

Taking the logarithmic derivative, we obtain

d ln E / d ln S = - (1 + W ) (2)

For large N relative to ε  and δ, the logarithmic
coordinates become linear, as shown schematically in
Fig. 3.

        

Figure 3 – A schematic description of –lnE (efficiency)
as a function of –lnS (errors) for a fixed, bulk traffic
technology ( C0  ), H  = 1. A condition of no weather
influence corresponds to W = 0 on a line with slope, H =
–1.  An improvement in efficiency (AB) cannot be
achieved without a commensurate increase in errors
unless the bulk operation of the NAS also improves
(BC).

There are 2 cases in which the relationship between
efficiency and errors becomes trivial, and the original
concept (1) is no longer useful. The characterizations
are only descriptive of an ideal in a limiting case.

1) Almost Perfect Traffic Control (S = constant)
Traffic management and dispatch operations maintain
safety of scheduled aircraft by redirecting flights around
hazardous weather.  Although efficiency is reduced by
adverse weather, errors are determined only by other
factors; eg, mechanical failures, or human errors.

2) Almost Perfect Safety (E = constant)
Unscheduled (GA and Business Aviation) pilots
maintain safety by favoring safety over efficiency; eg,
they refuse to fly until the weather is favorable relative to
their operating equipment and skill. Although efficiency
is reduced by adverse weather, errors occur only when
their equipment and skill are overwhelmed.

To investigate the more general case, we used
empirical data for the year 2003 to determine εεεε and δδδδ .
Subsequently, the intercept constant (C0) for the bulk
system technology, and the slope (W) representing a
bulk weather index can be determined.  W is the bulk
weather index for the system.

The distribution of εεεε and δδδδ are shown in Figs 4 and 5.
There values are extremely small relative to N or M, and
the shape is similar to a Poisson distribution.
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Figure 4 - Frequency distribution of the daily number of
delays and deviations (δ), divided by the number (N) of
system operations each day for 2003
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Figure 5 - Frequency distribution of daily operational
errors and deviations (ε) divided by the actual number of
system operations each day for 2003.



Subsequently, these data are combined and presented
in an efficiency diagram (Fig. 6).

This analysis appears to show that the data is close to
the idealized case 1), Almost Perfect Traffic Control. If
the variations in Efficiency are caused by daily
variations in hazardous weather, the number of errors is
very small and appears to be independent of weather.
This is a superficial conclusion, but if true, would
redirect investigations towards an intuitive study of
weather indices by Wine or Strouth (as described in the
previous sections) or towards station climatology (Liles,
2004a,b).

On the other hand, however close traffic management
comes to the ideal case, in reality it is not perfect, and
these data hold the potential to discover the control that
weather (W >>0) has on efficiency through a highly
nonlinear control of safety.
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Figure 6 - Delays as a function of Errors for each day of
2003.

4. NEXT STEPS
All three methods deserve further work before
substantial results are reported. The immediate
objective is to understand quantitatively and separately,
the changes in efficiency in the NAS due to weather and
traffic management. The ultimate objective is to forecast
air traffic impacts of the weather that is forecast.  And
always, there will be uncertainty due to the
hydrodynamic instability of the atmosphere and due to
the non-linear behavior of NAS operations.
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