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1.   INTRODUCTION 
 

Traditional statistical measures used to 
evaluate precipitation forecast skill are affected by 
variations in the resolved scale of the features in 
both the forecasts and the observations.  This scale-
dependence complicates the comparison of 
precipitation fields that contain differing degrees of 
small-scale detail and is especially important for 
warm season precipitation, which is dominated by 
convective storms.  These storms produce 
precipitation patterns with significant small-scale 
variability, which are extremely difficult to 
accurately predict.  With the ever-increasing 
resolution of numerical models, forecast 
precipitation fields with a similarly large amount of 
small-scale detail can now be generated.  
Frequently, however, traditional scores (such as the 
equitable threat score) are worse for these detailed 
forecasts than for forecast fields with less small-
scale detail.  This is because the detailed forecasts 
often produce “near-misses” for precipitation 
maxima, even though they quite accurately depict 
the overall character of the precipitation.  Despite a 
general recognition of this scale dependency and 
some assessments of it (Gallus 2002, Tustison et al. 
2001), no systematic evaluation of the dependency 
has been completed. Recognition of the dependency 
has, however, led to a significant research effort 
aimed at developing more sophisticated verification 
metrics that more accurately quantify the realism of 
detailed precipitation forecasts. 

In this study, we quantitatively document the 
scale-sensitivities in precipitation skill scores for 
four numerical model formulations run during the 
International H2O Program (IHOP). IHOP was a 
field project run in the Southern Plains during the 
spring of 2002, with the goal of obtaining better 
observations of moisture and evaluating the 
observational requirements of atmospheric water 
vapor for modeling applications.  The models  
__________________ 
* Corresponding author address:  Stephen S. Weygandt, 
NOAA/FSL, R/FS1, 325 Broadway, Boulder, CO  80305, 
Stephen.Weygandt@noaa.gov 

 
compared include the operational 12- km Eta 
(ETA12), the operational 20-km RUC (RUC20), an 
experimental 10-km RUC (RUC10) and an 
experimental 12-km LAPS/MM5 (LMM12).  The 
comparison of the equitable threat and bias scores 
for the models (verified against stage IV 
precipitation data) on different resolution grids is 
complemented by spectral analysis of the various 
forecast and verification fields.  From this analysis 
we test the hypothesis that skill scores for models 
verified on different resolution grids are not directly 
comparable.  Furthermore, we document how the 
skill-score sensitivity depends on the spectral 
characteristics of the precipitation field, as well as 
the bias of the field.  Toward that goal, we have 
considered two sets of experiments, one in which in 
which both the forecast and verification 
precipitation fields are systematically upscaled to 
larger grid-resolution and one in which only the 
forecast fields are upscaled. This upscaling of high-
resolution forecasts allows us to isolate the scale 
effects from effects due to variations in model skill 
for different resolutions, effectively producing for 
each model a series of equivalent forecasts, varying 
only in the degree of small-scale detail retained.  
Initial work has focused on detailed analysis of a 
single case. The case chosen well represents the key 
sensitivities to be evaluated.  We are currently 
extending the single case study analysis to a multi-
week period from IHOP. 
 
2.  EXPERIMENT METHODOLOGY 
 
  For both experiments, a fairly simple 
procedure for examining the scale sensitivity in the 
precipitation skill-scores is used as summarized in 
Fig. 1.  For expt. 1, in which both the forecast and 
verification fields are upscaled, we first compare 
the equitable threat scores (ETS), bias scores, and 
spectra for the four models on domain-matched grid 
sub-sections extracted from each model’s native 
grid.  This is accomplished by determining the 
largest common domain among the native grids of 
the four models, excluding any model points 
directly impacted by the lateral boundary  
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 Remapping procedures used for each experiment 

         
 
Fig. 1 Schematic diagram depicting the remapping procedures used for each experiment.  a) For expt. 1, both forecast 
and verification fields are remapped to matched common 20-, 40-, and 80-km grids.  b) For expt. 2, the native and coarsened 
forecast fields are remapped to the common 10-km grid   
 
conditions.  For each model, the corresponding 
rectangular subsection of the precipitation field is 
then isolated for comparison.  Note that even 
though the exact gridpoints do not match between 
the different native grid subsections, it is imperative 
that the domain coverage of the models match.  
Otherwise the spectra and skill-scores cannot be 
directly compared.  Skill scores for each model (on 
its native grid resolution) are then computed 
relative to stage IV data remapped to each model’s 
native grid subsection. The stage IV precipitation 
data (Baldwin and Mitchell, 1998) are on a 4-km 
resolution national mosaic composited from gauge 
and radar data estimates supplied by each River 
Forecast Center.  All remappings are accomplished 
using a standard procedure from the National 
Centers for Environmental Prediction (NCEP, 
Baldwin 2000), which approximately conserves the 
total precipitation volume, and introduces minimal 
smoothing.  The remapping is accomplished by 
performing a nearest neighbor analysis from the 
original (input) grid to a 5x5 array of points 
encompassing each target (output) grid square.  A 
simple average of these 25 target sub-grid values 
yields the remapped value at the target gridpoint.       
 Skill score computations are complemented by 
intercomparison of the precipitation spectra for the 
model forecast fields (on their native-grid sub-
sections) and for the stage IV data interpolated to a 
neutral, domain-matched 10-km grid. The spectra 
are computed using the Errico (1985) technique, in 
which a 2-D Fourier transform is performed to 
determine spectral coefficients.  Multiplication of 
the spectrum coefficients by their complex 
conjugate yields the 2-D variance spectrum, which 
is converted to 1-D by an annular average.   

 The grids  (each forecast model and the 10-km 
stage IV verification) are then systematically 
upscaled to identically matched 20-, 40-, and 80-km 
grids, using the NCEP interpolation routine.  Skill 
score and spectra comparisons can then be made at 
each of the three common grid resolutions.  For 
each model, skill scores can be compared as a 
function of verification resolution and precipitation 
threshold.  In this manner, we effectively create for 
each model a series of equivalent forecasts differing 
only in the degree of small-scale detail retained. 
This allows us to document the change in skill 
attributed solely to the upscaling of the forecast and 
verification fields from native through 80-km 
gridlengths.  As such, this study represents an 
extension of the work by Gallus (2002), with a 
complementary comparison of the spectra, 
following Baldwin and Wandishin (2002).  From 
the expt. 1 results we are able to address the 
question of how comparable are skill scores from 
different grid resolutions (containing different 
amounts of small-scale detail) verified on their 
native grid.   
 For expt. 2, in which only the forecast fields 
are upscaled, the upscaled forecast fields from the 
common 20, 40, and 80-km grids are remapped to a 
common 10-km grid as depicted in Fig. 1b. 
Forecast fields from the cutdown native grids are 
also remapped to the common 10-km domain.  
These forecast fields are then verified against stage 
IV data that has been remapped to the common 10-
km domain.  It is important to note that in contrast 
to the expt.1 remappings, in which the goal is to 
remove small-scale detail as the fields are upscaled, 
for expt. 2, the remappings merely transform the 
given field to a 10-km grid. 
  



 

       
 
Fig. 2 6-h model predicted precipitation (in) for period ending 1800 UTC, 13 June 2002.  Model forecasts shown include 
RUC 20-km (RUC20), RUC 10-km (RUC10), LAPS MM5 12-km (LMM12), and ETA 12-km (ETA12).  Also shown is Stage IV 
precipitation verification.  Contour bands are as indicated in the top center key.  For each model, skill scores (ETS and bias) 
are shown for the 0.25” threshold as well as the average precipitation per gridpoint computed on the common 10-km grid
 
From the expt. 2 results, we are able to address the 
question of for a fixed, highly detailed verification 
field, how do skill scores change as small-scale 
detail is systematically removed from the forecast 
fields.  
 
3.  RESULTS 
 
 We present here a detailed analysis of a single 
6-h precipitation forecast that highlights many of 
the scale-sensitivity issues in precipitation 
verification.  Fig. 2 shows the ETA12, RUC20, 
RUC10, and LM12 6-h accumulated precipitation 
from the period 1200-1800 UTC, 13 June 2002, as 
well as the corresponding stage IV verification as 
depicted on the Real-Time Verification System 
(RTVS, Mahoney et al. 200X) webpage. This 
active IHOP period presents an ideal case, because 
all models show reasonable skill in the overall 
precipitation location, allowing the substantial 
variations in scale among the models to manifest 
themselves in the skill-score analysis.  The stage IV 

verification is typical of most warm season 
precipitation fields, with many small-scale heavy 
precipitation areas.  As indicated by the .25” 
threshold skill scores, the highly detailed RUC10 
performs very well (high ETS, bias near 1).  The 
ETA12 and LMM12 also perform quite well 
(slightly lower ETS, bias near 1.4), but the ETA12 
contains substantially less small-scale detail than 
the LMM12 (or any of the other fields).  The 
RUC20 precipitation location is also good, but the 
amounts are lighter, leading to lower ETS and bias 
scores.  Also indicated on each panel is the average 
precipitation per gridpoint, computed for the 
common 10-km grid. Comparison of these values 
gives a measure of the total precipitation volume 
bias for each model.  
 Fig. 3 shows the spectra for the various models 
computed on the matched native sub-grids, as well 
as the spectrum for the stage IV verification 
interpolated to the common 10-km grid.  
Comparison of the various spectra confirms the  



 
Fig. 3 Spectra computed for the model predicted and 
Stage IV verification 6-h accumulated precipitation 
fields.  Models shown include RUC20, RUC10, LMM12, 
and ETA12. 
 
qualitative assessment concerning the degree of 
small-scale detail in each of the model precipitation 
fields.  In particular, the smoothness of the ETA12 
precipitation field (see Fig. 1) is clearly evident in 
the reduced amplitude and steeper slope of the 
ETA12 spectral curve relative to the other spectra.  
The spectral slopes of the other model forecasts are 
in much better agreement with that of the stage IV 
verification data. The minimal numerical 
smoothing employed in the RUC model 
formulations is evident in the RUC10 and RUC20 
spectral curves.  The LMM12 curve shows the best 
match to the stage IV verification for wavelengths 
greater than 40 km, but indicates significant 
smoothing of the shortest wavelength features. 
 
a) UPSCALING FORECASTS  AND  

VERIFICATION 
 

We begin our evaluation of the impact of 
upscaling both the model forecast and verification 
precipitation fields by assessing the changes in the 
spectra as the fields are upscaled.  Fig. 4 shows the 
spectral changes as the fields are upscaled for the 
stage IV verification as well as for the RUC10 and 
ETA12 model fields.  As expected, the changes are 
similar for the stage IV and RUC 10 models, with 
substantial reductions in the short wavelength 
spectral amplitude as the fields are upscaled.  In 
contrast, the ETA12 spectral amplitude shows 
much less change as the ETA12 fields is upscaled.  
As expected and in accordance with Fig. 2 and 3,  

 

 
 
Fig. 4. Spectra computed for the 6-h accumulated 
precipitation fields on the matched native sub-grids, and 
common 20-, 40-, and 80-km grids.  Shown are the Stage 
IV verification, RUC10 forecast, and ETA12 forecast.



 
 
Fig. 5 Equitable threat score (ETS) values computed for a range of precipitation thresholds (horizontal axis) and a range 
of grid resolutions (native, 20-km, 40-km and 80-km).  Models shown include RUC20, RUC10, LMM12, and ETA12. 
 
 
the ETA12 field is less changed by the upscaling 
because the field is already quite smooth.  

The spectral curve for the remapping of the 
RUC10 from its cutdown native grid to the 
common 10-km grid is shown to illustrate the 
spectral changes introduced by the NCEP 
remapping algorithm for a grid-resolution neutral 
transformation. This subject has been addressed 
previously by Accadia et al. (2003) who found that 
the NCEP algorithm was superior to simple bilinear 
interpolation, though it did improve ETS values and 
produce changes in the bias. Their results are 
consistent with the smoothing of very small-scale 
details as revealed by the spectra for the RUC10 
remapped to common 10-km grid (shown in Fig. 
3b).  This small degree of smoothing inherent in the 
NCEP algorithm should not compromise our 
results, because we apply the technique consistently 
to remap all fields (forecast and verification) to 

coarser resolution grids.  As confirmed by the 
spectra, this remapping removes small-scale detail 
commensurate with the grid coarsening. 
 Fig. 5 illustrates, for each model and over a 
range of precipitation thresholds, the change in the 
equitable threat scores associated with upscaling 
the forecast and verification precipitation fields 
from native through 80-km.  The general 
improvement in the ETS values as the model and 
verification fields are upscaled largely confirms the 
hypothesis that skill scores for models verified on 
different resolution grids are not directly 
comparable and is consistent with the results of 
Gallus (2002).  For several variations of the Eta 
model run at 10-km, he found that ETS values were 
generally higher when verification was performed 
on a 30-km grid rather than the native grid.  Closer 
examination of Fig. 4 (and Table 1 of Gallus 2002),  



 
Fig. 6 Percent change in equitable skill score (ETS) computed for a range of precipitation thresholds (horizontal axis) 
and a range of grid resolutions (native, 20-km, 40-km and 80-km) for the case where both forecast and verification are 
upscaled.  Models shown include (a) RUC20, (b) RUC10, (c) LMM12, and (d) ETA12.   Color bands are as indicated in key 
on the left.  Overlaid upon the percent change plots are approximate contours ford selected  precipitation bias values (thick 
black lines).   
 
reveals a more complicated pattern of ETS change 
as the verification grid is upscaled.  This pattern is 
best revealed by normalizing the ETS values in Fig. 
5 by the ETS for the native grid, yielding a percent 
change in the ETS due to the grid upscaling.  Fig. 6 
shows the result of this normalization, a contour 
plot of the percent change in the ETS relative to the 
native grid ETS as a function of precipitation 
threshold and verification grid resolution.  Overlaid 
upon this plot are approximate locations of specific 
bias values in the same threshold/resolution space.   
 A number of interesting patterns are revealed 
in Fig. 6. For all three models with substantial 
mesoscale detail (RUC20, RUC10, LMM12), a 
cutoff precipitation threshold exists, with ETS 
improvement occurring below this threshold and 
ETS degradation occurring above this threshold.  
Furthermore, the cutoff threshold is a function of 
the verification resolution, decreasing as the 
precipitation fields are upscaled.  These patterns are 

consistent with expectations for upscaling of 
detailed fields.  The smoothing of fields (both 
forecast and verification) as they are upscaled 
causes a decrease in coverage for the higher 
precipitation thresholds, and a corresponding 
decrease in ETS values. This reduction in coverage 
and decrease in skill begins at the largest thresholds 
(amounts larger than those shown in Fig. 5) and 
progresses to successively smaller thresholds as the 
up-scaling proceeds to larger scales.   
 This cascade of precipitation from larger to 
smaller thresholds as the grids are upscaled is 
confirmed by calculation of the fractional area 
covered by precipitation exceeding each threshold 
for each grid.  Fig. 7 shows the results of such a 
calculation, the fractional coverage of RUC10 
predicted precipitation in excess of each threshold 
for the native and upscaled grids.  Comparison of 
the fours curves for the different precipitation 
thresholds illustrates the overall decrease in



        
Fig. 7 a) Percent of the RUC10 domain with precipitation in excess of each threshold for each grid resolution. 
Comparison of the curves shows the cumulative change in fractional coverage as the field is upscaled.  b) Change in percent 
coverage for each upscaling, with yellows denoting a decrease in percent coverage and pinks indicating an increase in 
percent coverage.  Note that these changes are incremental (not cumulative) and must be summed to get the total change. 
 
 

     
 
Fig. 8 Same as Fig. 7, but for Stage IV verification data. 



fractional coverage for large precipitation 
thresholds and increase in fractional coverage for 
small thresholds.  To better illustrate this, the 
change in fractional coverage for each coarsened 
grid relative to the next finer resolution grid is 
shown in Fig. 7b. This depiction clearly shows the 
fractional coverage decrease at larger thresholds 
progressing to smaller thresholds as the forecast is 
further coarsened. 
 Of course, a similar cascade occurs for the 
stage IV verification field as depicted in Fig. 8.  For 
all resolutions, the stage IV fields have a larger 
fractional coverage for the large precipitation 
thresholds and a smaller fractional coverage for the 
smaller thresholds compared to the RUC10 forecast 
fields (more intense precipitation maxima, but 
smaller total areal coverage), accounting for the 
bias vs. threshold relationship seen in Fig. 6b. 
 Note that for any threshold and grid resolution, 
the bias is exactly specified by the ratio of the 
forecast and verification fractional coverage. Thus, 
we see that differences in the cascade between the 
forecast and verification fields directly explain the 
change of bias as the grids are upscaled. As an 
example, the strong RUC10 bias decrease with 
upscaling between the 0.15 and 0.25 thresholds 
occurs because the stage IV fractional coverage is 
increasing at these thresholds, while it is decreasing 
for the RUC10.  Because the Stage IV has larger 
precipitation maxima, the stage IV cascade results 
in differential increase in fractional coverage for 
nearly all thresholds, yielding a general decrease in 
RUC10 bias for all thresholds. 
 For the ETA12, the cascade of precipitation 
from larger to smaller thresholds is less pronounced 
because the initially smooth precipitation field 
undergoes less modification in the upscaling 
process.  Thus, ETS changes occur primarily from 
the smoothing of only the stage IV verification, 
resulting in increasing verification coverage for 
nearly all thresholds, but nearly constant forecast 
coverage.  This leads to a markedly different 
pattern of ETS change for the ETA12 (Fig. 4d).  
Here, the percent improvement in ETS is less 
pronounced than all but the RUC20, but 
improvement occurs for all precipitation thresholds.  
Distinctly missing from the ETA12 model plot is 
any evidence of a cutoff threshold. 
 Understanding how differences in the 
precipitation cascade between the verification and 
the various models impact the bias and ETS values 
facilitates a better understanding of the sensitivities 
displayed in Fig. 6.  All models overpredict the 
smallest and underpredict the largest thresholds, 
with a slight decrease in bias as the model and 
verification fields are upscaled. 

For the RUC20, RUC10, and LMM12, the 
transition from ETS improvement with upscaling to 
ETS degradation with upscaling shows some 
correlation with bias.  For each of these models, the 
cutoff is reasonably well predicted by the 0.5 bias 
line. This is consistent with the cascade of 
precipitation from larger to smaller amounts as the 
verification grid is coarsened. For a given 
precipitation threshold, as the ratio of forecast to 
observed points falls below a certain ratio, the skill 
is measured by the ETS begins to fall.  For the 
RUC20 model, which has the most significant 
underprediction (especially for larger thresholds) 
the ETS reduction is most severe and extends to the 
lowest thresholds.  No such correlation between 
bias and ETS change is seen for the ETA12 plot 
(Fig. 6d), as large improvements occur for the 
largest threshold, which has a bias near 0.5.  Again, 
this is consistent with the fact that for the ETA12, 
only the verification is being significantly 
smoothed by the upscaling. 
 Finally, we present a more explicit illustration 
of the improvement in ETS as small-scale features 
are removed from the forecast and verification 
fields.  Fig. 9 shows a comparison of the ETS for 
the LMM12 and ETA12 on their native grids and 
the common 40-km grid.  On the native grids, 
ETA12 scores are clearly better for all precipitation 
thresholds.  For both models, improvement occurs 
for nearly all thresholds as the fields are upscaled 
from the native 12-km grid to the common 40-km.  
For all but the largest thresholds, however, the 
relative improvement is less for the ETA12 than the 
LMM12.  The result is that for the common 40-km 
grid, the ETS values are nearly identical for the two 
models over a broad range of low and moderate 
precipitation thresholds. 
 
b) UPSCALING ONLY FORECASTS  
 

In the second set of experiments we examine 
the impact on the skill scores when only the 
forecast fields are upscaled.  This expt. focuses on 
the important question of how does the smoothing 
of forecast fields affect their skill when verified 
against a fixed high-resolution   stage IV data.  As 
described in Sect. 2, the NCEP remapping 
algorithm was used to transform the coarsened 
fields (20, 40 and 80-km grids) to the common 10-
km domain.  This was accomplished in a series of 
steps with the grid resolution doubled each time. In 
addition, the precipitation field from each model’s 
native grid was remapped to the common 10-km 
grid.  



 
 
Fig. 9 Equitable skill score (ETS) values computed for a range of precipitation thresholds (horizontal axis) for 
two models (LMM12 and ETA12) and two grid resolutions (native 12-km and 40-km ). 
 
Visual examination of the 10-km remapped fields 
(not shown) indicates near perfect agreement with 
the coarser resolution input fields, however, spectra 
from the 10-km remapped fields indicate a slight 
amount of smoothing during the remapping process 
and the introduction of a small amount of noise. 
These imperfections in the remapping should have 
very little impact on the results presented.  

As depicted in the schematic shown in Fig. 1b, 
we now illustrate for each model the change in ETS 
when only the forecast field is upscaled.  
Analogous to Fig. 6, Fig. 10 shows the percent 
change in the ETS (relative to the native grid 
forecast remapped to the common 10-km) as a 
function of precipitation threshold and smoothness 
of the forecast field.  Although all fields are defined 
on the common 10-km grid, the 20-, 40-, and 80-
km fields are progressively smoother than the 10-
km field.  This distinction between grid spacing of 
the field and scale of the features depicted in the 
field has sometimes been referred to as effective 
resolution and is discussed by Pielke (2001), 
Baldwin and Wandishin (2002) and others. 

Overall, the pattern of ETS change in Fig. 10 is 
quite similar to that shown in Fig. 6.  Moreover, the 
differences can be readily explained by noting that 
in Expt. 1 (Fig. 6), the cascade of precipitation from 
high to low thresholds is occurring for both the 
forecast and verification fields, but in expt. 2 (Fig. 
10) the cascade is only occurring for the forecast 
fields.  Thus in expt. 2, the biases decrease at the 

highest thresholds and increase at the lowest 
thresholds, as indicated by the slopes of the bias 
lines in Fig. 10.   

The lack of skill change at any threshold for 
the ETA12, is consistent with the fact that little 
modification is occurring for either the forecast or 
verification field.  The verification is specifically 
held constant and the forecast field is little changed 
because it as already quite smooth on the native 
grid.  The expt. 2 percent improvements for the 
other models are somewhat reduced from expt. 1 
because only one of the two fields (the forecast) is 
being smoothed, somewhat reducing the likelihood 
of increasing the fraction of hits at a given 
threshold.  The LMM12 decrease in skill for small 
thresholds is related to the increase in bias beyond 
values optimal for the ETS.   

 
4.  DISCUSSION 
 

The results from Expt. 1, where both the 
forecast and the verification are upscaled are well 
known and we merely document the sensitivity for 
a particular case.  They do confirm the fact that 
forecasts verified on different resolution grids are 
not directly comparable using the ETS.  The 
forecast verified on the coarser resolution grid will 
have an advantage due solely to the difference in 
the grid resolutions. 

The results from the Expt. 2 are not surprising, 
and underscore the difficulty of showing 



 
 

 Fig. 10 Percent change in equitable skill score (ETS) computed for a range of precipitation thresholds (horizontal axis) 
and a range of effective resolutions (native, 20-km, 40-km and 80-km) for the case where only the forecast fields are 
smoothed.  Models shown include (a) RUC20, (b) RUC10, (c) LMM12, and (d) ETA12.   Color bands are as indicated in key 
on the left.  Overlaid upon the percent change plots are approximate contours for selected precipitation bias values (thick 
black lines).   

 
improvement, as measured by the ETS, for high-
resolution forecasts.  Because these forecasts 
frequently produce small-scale precipitation fields 
with phase errors, smoothing the forecast field 
almost always improves the forecast even when 
verified against highly detailed fields.  The 
potential improvement for various thresholds from 
smoothing the forecast is modulated by a number of 
factors, including 1) the degree of smoothness in 
the initial field, 2) the overall bias of the field, and 
3) the degree to which the initial field is affected by 
small phase errors in small-scale details.   

With respect to the first factor, the ETA12 
provides a clear example of an initially smooth 
field (even though it is on a high resolution grid).  
In effect, the benefit from smoothing the forecast 
has already been realized.  With respect the second 
factor, the LMM12 and RUC20 are on the opposite 
extremes.  For forecasts like the RUC20 with its 

pronounced dry bias, ETS reductions are almost 
inevitable for large thresholds, because the 
smoothing reduces bias to near zero.  ETS 
improvements can still occur for low to moderate 
thresholds, as noted for the RUC20 in Fig. 10.  
With its large overall bias (as indicated by the large 
average precipitation per gridpoint value in Fig. 2) 
and abundant small-scale detail, the LMM12 is 
ideally suited to improve at medium to large 
thresholds, as noted in Fig. 10. 
 With respect to the third factor, two extreme 
cases can be considered.  First, very poor forecasts 
exist that will not benefit from smoothing (eg: very 
large phase errors, completely missed or 
erroneously predicted precipitation area).  Secend, 
some forecasts accurately predict small-scale 
features.  These truly superior forecast profit little 
from smoothing.  As an extreme example of such a 
forecast, consider the verification of progressively  



 
Fig. 11 Change in ETS value as the predicted 
precipitation field is smoothed for four models (RUC20, 
RUC10, LMM12, and ETA12) and the Stage IV data, 
verified against the Stage IV data on the common 10-km 
grid.  Values shown are for the 0.25” threshold. 
 
smoother versions of the stage IV against the stage 
IV data on the common 10-km grid.  In this case,  
the 10-km stage IV “forecast” perfectly predicts all 
the small-scale features, and the ETS values would 
decrease (from 1) as the forecast is smoothed.   

Fig. 11 illustrates this smoothing vs. ETS 
relationship (for the 0.25” theshold) for a perfect 
stage IV “forecast” as well as the various model 
forecasts.  As expected, the ETS for the perfect 
stage IV forecast decreases with increasing 
smoothing.   The LMM12  ETS value increases 
with smoothing, while the  ETA12 and RUC10 
ETS values are nearly constant.  Because of its 
strong dry bias, the RUC20 ETS decreases as the 
field is smoothed.  

The differing behaviors between the perfect 
and actual forecasts as they are smoothed gives 
some indication of the extreme demands that the 
ETS places on highly detailed forecasts.  In some 
sense, the stage IV perfect forecast curve provides a 
practical upper-bound on the ETS score that can be 
attained for a given effective resolution forecast 
verified against the high-resolution data.  
Furthermore the slope of the stage IV perfect 
forecast curve provides a measure of the degree of 
small-scale detail in the verification field, with less 
negative slopes denoting smoother fields. 

 
 5.  SUMMARY AND FUTURE WORK 
 
 Detailed analysis of a single case has yielded 
results that appear to confirm the initial hypothesis 
that precipitation skill-scores for models verified on 
different resolution grids should not be directly 
compared because: 1) ETSs generally increase as 
forecasts are verified on progressively coarser 
domains and 2) the improvement is greatest for 
fields that contain the largest amount of small-scale 
detail.  While a general recognition of this 
sensitivity exists, with the exception of the work by 
Gallus (2002), the sensitivity has not been 
quantitatively documented.  As discussed by Gallus 
(2002), this smoothness/skill relationship has 
significant implications for the downscale extension 
of mesoscale models.  Our results support Gallus’ 
conclusion that it may be difficult to show 
improvement in ETS values for models with 
increasingly fine resolution.  The degree to which 
small-scale details should be retained in mesoscale 
models (and more sophisticated techniques used to 
verify the models) is the focus of some attention in 
the mesoscale modeling community. Our aim in 
this research is not to answer that question, but to 
provide a systematic documentation of the scale-
sensitivities that do exist for traditional skill scores, 
such as the ETS.   
 For both exts. 1 and 2, we are currently 
extending the single case study analysis to include 
two one week periods (55 cases) encompassing the 
most convectively active periods during IHOP.  
Preliminary results for the first expt. indicate the 
trends documented in this single case study are also 
seen in the multi-case average.  Further analysis of 
these multi-case results for both expts. is ongoing. 
In the future, we hope use this set of model 
forecasts and verification data as a testbed for 
evaluating more sophisticated scale-dependent 
verification techniques. 
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