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Abstract: Surface visibility is important for airport 
operations, since it affects the VFR/IFR status and 
category. This study demonstrates a method of 
making short-term visibility forecasts using an 
approach similar to that employed in the Weather 
Support to Deicing Decision Making (WSDDM) 
snow rate forecast. The ASOS installations at 
each major airport include sensors which measure 
visibility. This study uses those visibility 
measurements, along with radar observations and 
other ASOS data, to determine a relationship 
between radar reflectivity and visibility during snow 
conditions. This relationship is used together with 
an extrapolation forecast of radar reflectivity to 
determine forecast visibility during snow conditions 
out to one hour. The paper will present an 
evaluation of the technique at airports in the New 
York area.* 

1 INTRODUCTION 

For the past 6 years the FAA-sponsored Weather 
Support to Deicing Decision Making (WSDDM) 
system has included a component which produces 
a short-term forecast of snowfall rate at the 
surface using gauge-calibrated radar. 

The WSDDM snowfall-forecasting algorithm has 
demonstrated that it is possible to use radar 
reflectivity and radial velocity data to track and 
forecast the motion of snow squalls and snow 
bands. This motion information, combined with 
surface wind data and the estimated fall speed of 
snow particles, allows the WSDDM algorithms to 
forecast the precipitation rate of snow at the 
ground. Gauges at ground sites accurately record 
the actual snow rate. This gauge-measured data 
provides the ground truth from which the 
relationship between radar reflectivity and snow 
rate is computed. 

Surface visibility is important for airport operations, 
since it affects the VFR/IFR status and category. 
This study considers the feasibility of making 
short-term visibility forecasts using an approach 
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similar to that employed in the WSDDM snow rate 
forecast. The ASOS installations at each major 
airport include sensors which measure visibility. 
This study uses those visibility measurements, 
along with radar observations and other ASOS 
data, to investigate the relationship between radar 
reflectivity and visibility and to determine whether 
it is feasible to base a short-term visibility forecast 
on these observations. 

We will show that in order to make an accurate 
forecast we need to understand how snow 
particles move from where they are detected by 
radar to where they arrive at the ground and 
impact visibility. 

Specifically, the following must be determined: 

•  the motion of the radar echo; 

•  the vertical wind profile from the radar 
beam height to the surface; 

•  the time taken for the particles to fall from 
the radar beam height to the surface. 

We will also show that it is possible to compute 
visibility from radar reflectivity provided the 
specified calibration procedure is followed. 

2 Observations and data sets 

2.1 ASOS visibility measurements 

Each ASOS installation includes one or more 
visibility sensors. In multiple-sensor installations 
the sensors are located at different points on the 
airport which allows assessment of the spatial 
variability of the visibility values. 

ASOS uses a Belfort forward-scattering sensor to 
measure visibility (Nadolski and Gifford, 1995). 
The visibility is expressed in terms of Extinction 
Coefficient (E), with units of km-1. E is a measure 
of the spatial rate of diminution or extinction of 
transmitted visible light (Huschke, 1959). 

Visibility is inversely related to E. In the ASOS 
system, the visibility is computed from E using 
different formulae for day and night conditions 
(Nadolski and Gifford, 1995). 
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Day: V = 3.0 / E (1) 

Night: 0.00336 = e
(-EM x V)

 / V (2) 

The night equation assumes that the variables are 
expressed in statute miles rather than km. EM is 
used instead of E, where is EM expressed in units 
of mi-1. 

Table 1 shows examples of visibility computed for 
various E values for day and night operations. 

 
E 

(km-1) 
Day 
vis. 

(miles) 

Night 
vis. 

(miles) 

E 
(km-1) 

Day 
vis. 

(miles) 

Night 
vis. 

(miles) 

0.10 18.64 17.58 1.50 1.24 2.06 

0.15 12.43 12.98 2.00 0.93 1.62 

0.20 9.32 10.42 2.50 0.75 1.34 

0.25 7.46 8.76 3.50 0.53 1.01 

0.30  6.21 7.60 4.00 0.47 0.90 

0.35 5.33 6.73 4.00 0.47 0.90 

0.40 4.66 6.05 5.00 0.37 0.75 

0.50  3.73 5.06 6.00 0.31 0.64 

0.60 3.11 4.37 7.00 0.27 0.56 

0.70 2.66 3.86 8.00 0.23 0.50 

0.80 2.33 3.46 9.00 0.21 0.45 

1.00 1.86 2.88 10.00 0.19 0.41 

Table 1: ASOS-derived visibility for various 
values of E 

The day/night differences result from the fact that 
the human eye perceives objects during the day 
differently from light sources at night. Therefore 
effective visibility differs between day and night for 
the same E value. In this study we only consider 
E, thereby removing the complexity of different E-
V relationships between day and night. 

The E values measured by an ASOS station are 
averaged over a 1-minute period for smoothing. 
After visibility has been calculated from the E 
value, it is further averaged over a 10-minute 
period using an harmonic mean: 

VMean = n/(1/V1 + 1/V2 + ...... 1/Vn). (3) 

2.2 Other ASOS measurements 

In addition to visibility, the ASOS stations measure 
a number of other variables. In this study we make 
use of wind speed and direction for determining 
the vertical wind profile. Follow-on work would 
probably incorporate the use of temperature and 
LEDWI precipitation category to discriminate 
between rain and snow. 

2.3 Radar observations 

Weather radar coverage of much of the 
continental United States is provided by the 150 or 
so 10-cm NEXRAD WSR88D radars run by the 
NWS. The data from these radars is made 
available via the NWS NOAA-port system as 
tertiary products in the NIDS format. These 
products are in the form of 2-D gridded data. 

More recently the data has become available from 
selected sites in greater detail on a beam-by-beam 
basis, known as level-2 data. Such data would be 
probably improve the accuracy of this type of work 
but is not essential. 

At major airports the WSR88D coverage is 
augmented by the 5-cm TDWR radars, which 
provide data at higher resolution and sensitivity. 

Weather radars typically operate in a surveillance 
mode in which successive 360-degree revolutions 
are completed at a constant elevation angle 
(antenna angle above the horizon). Each constant-
angle sweep is known as a Plan Position Indicator 
(PPI) product. Such measurements form a cone 
centered on the radar and elevated above the 
horizontal. PPIs start at a low elevation angle 
(typically 0.2 to 0.5 degrees) with increasing 
elevation angles for subsequent PPIs. 

Since the raw radar data lies on a complicated 3-D 
conical coordinate system, the data was 
remapped onto a simpler Cartesian grid before 
being used in this study. 

2.4 Data sets used in the study 

The following data sets were obtained for use in 
this study: 

 (a) 1-minute ASOS data from La Guardia (LGA), 
Kennedy (JFK) and Newark (EWR) airports for the 
period 2002/01/31 through 2002/04/30 2002. 
Since there are multiple visibility sensors at each 
airport, the mean from the sensors was computed 
to represent the value for that airport. 



  3 

 (b) NIDS radar data from the OKX (Long Island) 
WSR88D radar for the period 2002/01/31 through 
2002/04/30. 

 

3 Theoretical aspects of the forecast 

3.1 Advection-based nowcasting 

‘Nowcasting’ refers to the technique of making 
short term forecasts by interpreting and 
extrapolating the latest observations. Nowcasting 
in the context of this study concentrates on how 
things move rather than how they evolve. This 
differs from model-based work which aims to 
forecast how systems evolve as well as how they 
move. 

Advection is the technical term for the movement 
of elements within a weather system. Here we are 
aiming to make an advection-based forecast. It is 
therefore not surprising that much of the work 
concentrates on determining how the precipitation 
particles move from where they are detected by 
radar to where they arrive at the ground and affect 
the surface visibility. 

3.2 Precipitation particle trajectories from 
radar to gauge 

Since we wish to use the radar to predict the 
arrival of precipitation at the gauge, we need to 
consider the nature of the trajectory of the 
precipitation particles from the location at which 
the radar detects them to the point at which they 
are measured on the surface. 

The beam from a weather radar radiates power to 
a sample volume some distance above the 
surface. The radar receiver processes the signal 
returned from that volume and interprets it as 
reflectivity (Z, power) and radial velocity (VR, 
velocity to/from the radar site). 

Z represents the power returned from the contents 
of the sample volume - the higher the returned 
power the more 'severe' the weather in the beam. 
For display purposes Z is normally expressed in 
dBZ, where dBZ=10log10(Z). VR is an estimate of 
how fast particles are moving towards or away 
from the radar, and is measured in m/s. 

Figure 1 shows how a radar detects a weather 
echo aloft, and what the trajectory of the 
precipitation particles from the sample volume to 
the surface gauge might be. The sample volume is 

shown shaded. We use the motion of the radar 
echo to infer the wind vector at the height of the 
sample volume. In the situation depicted the 
surface wind and the movement of the radar echo 
aloft are the same, and there is no vertical wind 
shear. The particles theoretically will fall following 
a straight trajectory from the sample volume to the 
gauge. The source for the particles which arrive at 
the gauge is some distance upwind of the gauge, 
the distance being dependent on height of the 
sample volume and the ratio of the fall speed to 
the advection speed. 

 
Figure 1: Particle trajectory for wind profile 

with no shear 

 

Figure 2: Particle trajectory for wind profile 
with shear 

Figure 2 shows the situation for a reversing wind 
profile. The wind at the surface is in the opposite 
direction to the motion aloft. Therefore shear 
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exists in the vertical wind profile. The precipitation 
particles will follow a curved trajectory from the 
source to the gauge. The source will be overhead 
rather than upwind of the gauge site. 

The time taken for the precipitation particles to fall 
from the height of the radar sample volume to the 
surface (the lag) is a function of (a) the fall speed 
of the particles and (b) the height of the sample 
volume above the surface. 

Note that in Figures 1 and 2 the elevation angle of 
the radar beam geometry is grossly exaggerated 
for clarity. In practice the beam angle used is 
around 0.5 degrees and the beam geometry 
overhead the gauge may for all practical purposes 
be considered horizontal. 

3.3 The relationship between radar reflectivity 
Z and extinction coefficient E 

Logic dictates that, in precipitation, as Z increases 
so does E. This is so because increasing the 
number or size of the particles leads to an 
increase in power returned to the radar as well as 
an increase in the spatial rate of light extinction. 
Hence the Z-E curve should be monotonically 
increasing. 

This turns out to be true in practice. The exact 
relationship varies depending on the 
characteristics of the precipitation during a given 
event, but the essential nature of the relationship 
does not change. 

Figure 3 shows the scatter-plot for all of the Z-E 
data for EWR for the period 2002/01/31 to 
2002/04/30. 

 

Figure 3: DBZ-E scatter plot for Z-E data for 
EWR 

Muench and Brown (1977), in a study for the US 
Air Force, concluded that the relationship would 
have the form: 

E = a Z 
b

 (4) 

The data used in their study yielded values of 
0.091 for ‘a’ and 0.41 for ‘b’. 

A fit of the Z-E relationship to this data yields: 

E = 0.07 Z 
0.33

 (5) 
Inspection of the data in Figure 3 shows that for low Z 
values the function asymptotes to a small positive value 
for E, in this case 0.07. It seems reasonable to suggest 
that this value represents the 'clear air' E value for the 
ASOS visibility instrument. This observation will be used 
when computing the Z-E calibration – see section 4.6. 

The Muench and Brown study only included data 
with E values above 0.5 and dBZ values above 30. 
To more closely match that data set, Figure 4 
shows all of the LGA, JFK and EWR data 
combined but truncated to exclude E values below 
0.5 and dBZ values below 10. In this case the fit 
is: 

E = 0.07 Z 
0.39

 (6) 

which closely agrees with the result published by 
Muench and Brown. 
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Figure 4: DBZ-E scatter plot for LGA, JFK and 

EWR, with E > 0.5 and dBZ > 10 

The scatter in these plots is high and it is difficult 
to assess whether the form of the function is 
correct. 

However, consider Figures 5 and 6, which show 
the Z-E data plotted for LGA and JFK respectively 
for a 2-hour period on 2002/03/18. 

 

 

Figure 5: calibration plot for LGA 2002/03/18 
05:00Z – 07:00Z 

 

 
 

Figure 6: calibration plot for JFK 2002/03/18 
05:00Z – 07:00Z 

Suitable time-averaging (25 min) and lag (25 min) 
values have been applied to produce the plot - 
these issues will be dealt with in detail in later 
sections. The plots demonstrate the exponential 
relationship between Z and E, and also show the 
variability in the values of ‘a’ and ‘b’ for these two 
cases. 
In these plots at the top right you will see the Z-E 
relationship as well as a value labeled ‘RMSE’. This is 
the Root Mean Square Error of the estimate made for E 
by the Z-E function. It represents the mean error in E for 
the data used to fit the curve. It can be thought of as a 
measure of how well the Z-E function fits the measured 
values. We will make extensive use of the RMSE values 
later in this study to determine the optimum values for 
various aspects of the Z-E calibration. 

4 The algorithms 

4.1 Radar echo motion - TREC 

Figure 7 shows the 0.5 degree PPI for the OKX 
radar at 07:07Z on 2002/03/18. A band of snow is 
moving across the New York area from west to 
east. 
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Figure 7: 0.5-degree PPI for OKX radar at 07:07Z on 2002/03/18, 
showing TREC motion vectors 

Also shown on the figure are vectors indicating 
the motion of the radar echoes. These are 30-
minute vectors, i.e. they indicate the distance 
the echo is expected to move over a 30-minute 
period. The tick marks on the vectors show the 
10-minute motion. 

The reflectivity motion is computed using the 
Tracking Radar Echoes by Correlation (TREC) 
algorithm (Rinehart and Garvey 1978, Tuttle and 

Foote 1990). TREC looks for motion by 
recognizing 2-D patterns in the reflectivity data 
and computing how far those patterns move with 
time. It also considers radial velocity and 
attempts to reconcile the velocity signal with the 
motion obtained from the reflectivity. 

TREC produces a grid of U (E-W) and V (N-S) 
velocity components for the motion of the radar 
echoes. 
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4.2 Time series plot 

Before we go further we need to introduce an 
example of the time series plot. We will refer 
back to this plot as we explain aspects of the 
calibration and forecasting algorithms. 

Figure 8 shows the time history of radar and 
visibility data for LGA for 16:28Z on 2002/03/18. 
This figure contains much detailed information. 
Therefore we will explain it in detail before 
moving on. 

 

Figure 8: time series plot for LGA at 2002/03/18 06:26Z 

The time axis (in UCT) is along the bottom, with 
the E axis on the left and the dBZ axis on the 
right. 

The vertical red line marked 'NOW' marks the 
reference time for the plot. History is to the left of 
the line and forecasts (or ‘future’) to the right. In 
real-time operations only the forecast data would 
occur to the right of the NOW line. Since this is 
an analysis we also show what actually 
occurred, hence the data to the right of NOW. 
This can be thought of as 'truth' data. 

The vertical red line marker 'CALIB' marks the 
start of the calibration period. The Z-E 
calibration is performed for data between CALIB 
and NOW. 

The solid black line traces the dBZ overhead 
the gauge site. 

The yellow line traces the dBZ which was 
measured by the radar upwind of the gauge 
and which theoretically has followed the particle 
trajectory to arrive at the gauge. It is computed 
by looking both upwind and back in time. Details 
on this procedure will be presented later. 

The dotted yellow line is the reflectivity forecast 
– i.e., it represents the dBZ values which 
correspond to forecast precipitation at the 
gauge. 

The dark blue line traces E as measured by the 
gauge. 

The dotted blue line is the forecast for E. 

The green line represents the estimated E at the 
gauge. It is computed by applying a Z-E 
calibration to the dBZ data in the yellow line. 
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The black vectors are the mean TREC motion 
vectors for a region overhead the gauge. 

The dark blue vectors represent the measured 
wind at the ASOS site. In this example the 
surface wind opposes the TREC vectors, a 
situation similar to that depicted in Figure 2. 

The green vectors represent the 'weighted mean 
motion' for the particle trajectory. They are 
computed as the weighted mean of the TREC 
and surface motion vectors. In this case the 
weights were set to 50/50. 

The labels at the top right show the coefficient 'a' 
and exponent 'b' of the Z-E calibration function. 

4.3 Calibration plot 

Refer back to Figure 5. This is an example of a 
calibration plot, showing the data which is used 
to compute the Z-E calibration parameters. This 
example is for LGA at 07:00Z on 2002/03/18. 

The E axis is on the left and the dBZ axis along 
the bottom. The data points shown plotted are 
those used to compute the calibration, i.e. they 
lie between the CALIB and NOW lines in the 
time series plot. The line shown is the best fit of 
the Z-E exponential function to the data. 

The labels on the top left are as follows: 

•  Calib period: the calibration data is selected 
from the time period from the reference time 
back into the past by this number of 
minutes. 

•  Av period: the averaging period in minutes. 
If greater than 0, this indicates that the data 
has been smoothed through time averaging, 
using this number of minutes of data. It turns 
out that the averaging period has little effect 
on the computed calibration, however it is 
useful for helping to visualize the physics of 
the processes by smoothing out the noise. 
In Figure 5 an averaging value of 25 min 
was chosen. 

•  Lag: the lag time in minutes for the particle 
trajectory. This is the same lag as in the 
yellow line on the time-series plot. 

•  Trec wt, Surface wt: the weight applied to 
the TREC motion vectors vs. the surface 
motion vectors to compute the mean motion 
for the particle trajectory. 

The Z-E coefficient ‘a’ and exponent ‘b’ are 
shown at the top right, along with the RMSE 
(root mean squared error) for the fit. 

4.4 Radar-to-gauge time lag 

Refer to Figure 8 and compare the black trace 
(dBZ overhead the gauge) with the blue trace 
(measured E). They appear well correlated but 
with a shift in time. Now consider the yellow line, 
which is the lagged reflectivity determined by 
looking upwind along the TREC vectors to find 
the reflectivity source aloft which theoretically 
resulted in the measured precipitation at the 
surface. The lag was set to 25 minutes because 
it minimizes the RMSE – see below. 

There is an alternative way to visualize this data. 
Refer to Figures 9, 10, 11 and 12. These show 
the calibration plots for this case, using data 
from 05:00Z to 07:00Z, and lag times of 0, 10, 
20 and 25 minutes respectively. 

 

 

Figure 9: LGA calibration plot with lag of 0 
min, showing marked hysteresis 
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Figure 10: LGA calibration plot with lag of 10 
minutes, showing moderate hysteresis 

Figure 9 shows the calibration plot for this case, 
but with a lag of 0. Notice the apparent 
'hysteresis' loop in the data. The data points 
early in the event, as the reflectivity starts to 
increase, lie below the fitted line. This occurs 
because the unlagged reflectivity is 'leading' the 
measurement of E. Later in the event, as the 
reflectivity starts to decrease the data points lie 
above the line. Also notice the RMSE value of 
0.85. 

Figure 10, for a lag of 10 minutes, shows a more 
moderate hysteresis loop and an RMSE value of 
0.52. The lower RMSE reflects the fact that the 
fit is better than for a lag of 0. 

 

 

Figure 11: LGA calibration plot with lag of 20 
minutes, showing reduced hysteresis 

 

 

Figure 12: LGA calibration plot with lag of 25 
minutes, showing minimal hysteresis 

Figure 11 shows the calibration plot using a lag 
of 20 minutes and exhibits markedly reduced 
hysteresis with an RMSE value of 0.34. In 
Figure 12, for a 25 minute lag, the hysteresis 
has largely disappeared and the RMSE is 0.31. 

This demonstrates that we can estimate the 
optimum lag by minimizing RMSE. Table 2 
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shows the RMSE values for lags from 0 to 40 
minutes. In all cases the averaging period was 
25 minutes. 

 

Lag 
(Minutes) 

RMSE  

0 0.85 

5 0.67 

10 0.52 

15 0.42 

20 0.34 

25 0.31  

30 0.31 

35 0.39 

40 0.48 

 

Table 2: RMSE vs. lag for LGA event at 07Z 
on 2002/03/18 

From Table 2 it is clear that the RMSE varies 
smoothly with lag, reaching a well-defined 
minimum of 0.31 at a lag of between 25 and 30 
minutes. This analysis presents a useful method 
for both considering the physics of what is 
happening and for determining the actual lag. It 
seems reasonable to suggest that, at least for 
well-defined cases such as this one, the lag can 
be determined by minimizing the RMSE. 

By studying a number of cases at a site it should 
be possible to determine (a) what the optimum 
lag is and (b) whether this lag varies significantly 
from one case to another. It may even be 
possible to automate this procedure so that a 
forecasting system could 'tune' itself by finding 
the optimum lag. However, this hypothesis 
would need testing on a number of cases before 
it could be claimed that it would work reliably in 
practice.  

4.5 Particle trajectory 

Refer back to Figures 1 and 2, showing the 
theoretical trajectories of the precipitation 
particles falling from radar height down to the 
gauge location. Then consider the actual vectors 
plotted on Figure 8. These indicate that the 

TREC motion (black vectors) and surface wind 
(blue vectors) are opposed to each other in 
direction, suggesting a profile similar to that in 
Figure 2. 

As stated previously, the particle trajectory from 
radar sample volume to gauge is dependent on 
the vertical wind profile from the surface to radar 
beam height. In an ideal situation a wind profiler 
would provide that information. However, these 
instruments are not yet widely deployed. 
Therefore we need to infer the profile from the 
information we have at each extreme, the TREC 
vectors at radar beam height and the ASOS 
wind vector at the surface. 

We postulate that we can compute the mean 
trajectory motion vector as a weighted mean of 
the TREC and surface vectors.  

Figures 13, 14 and 15 show the calibration plots 
for LGA, varying the weights given to the TREC 
motion vectors and the surface motion vectors. 
Figure 13 shows one extreme, with TREC 
weighted 100% weight and Figure 14 represents 
the other extreme with TREC weighted 0%. 
Figure 15 is in between with TREC at 40%. 
Once again the RMSE values for the fit reflect 
how well the calibration curve represents the 
data. Inspection of the data also reveals 
hysteresis-type behavior, though less easily 
understood than that in Figures 9 through 12. 
What is clear from inspection is that the data in 
Figure 15 makes physical sense while that in the 
other two plots probably does not. We can 
conclude that the wind profile represented by the 
weights in Figure 15 reflects the true profile 
more accurately than either Figure 13 or 14. 
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Figure 13: LGA calibration plot, TREC vector 
wt. 100%, surface vector wt. 0%  

 

 

Figure 14: LGA calibration plot, TREC vector 
wt. 0%, surface vector wt. 100%  

 

 

Figure 15: LGA calibration plot, TREC vector 
wt. 40%, surface vector wt. 60%  

Table 3 shows the RMSE analysis in more 
detail, varying the weights by 10% each time. 

 
TREC 
weight 

Surface 
weight 

RMSE 

100% 0% 0.59 

90% 10% 0.56 

80% 20% 0.53 

70% 30% 0.43 

60% 40% 0.34 

50% 50% 0.31 

40% 60% 0.31 

30% 70% 0.34 

20% 80% 0.41 

10% 90% 0.45 

0% 100% 0.49 

 

Table 3: RMSE values for Z-E calibration for 
various TREC/Surface motion weights, 

LGA, 07Z 2002/03/18 

Once again, the RMSE varies smoothly, 
indicating that this is a deterministic method for 
finding the optimum. In this case the optimum 
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lies somewhere between 50/50 and 40/60 with 
an RMSE of 0.31. 

4.6 E vs. Z calibration 

Sections 4.1 to 4.5 above lay the groundwork for 
performing the Z-E calibration. It is essential to 
determine the TREC motion, lag and wind profile 
weights accurately before proceeding with the 
calibration. 

As stated in section 3.3, the Z-E relationship 
takes the form: 

E = a Z 
b  (7) 

This is a function with 2 unknowns, ‘a’ and ‘b’. 
Finding a good fit to a function with 2 degrees of 
freedom is not possible with data sets which are 
either small or noisy. 

Instead, we first determine ‘a’ using logical 
arguments and then compute ‘b’ statistically. 
This yields a more stable and robust result. 

4.6.1 Coefficient 'a' 

As stated in section 3.3, the coefficient 'a' has a 
physical basis. Since it is the asymptote of the 
Z-E function for low values of Z, it corresponds 
to the 'clear air' measurement of E. In other 
words, it is the E value measured by the gauge 
when the visibility is effectively unlimited. 

One option would be to use the lowest E value 
recorded in the recent past, say the previous 30 
days. However, this is susceptible to outliers and 
noise in the system. As a more robust measure 
than the minimum, we decided to use the 0.25% 
quartile of the E values observed over the past 
30 days. The 0.25 % quantile is the E value 
which is exceeded by 99.75% of the data in the 
chosen sample. In other words, it is very close to 
the minimum, but is not actually the minimum. 

4.6.2 Exponent 'b'. 

Once the coefficient ‘a’ has been determined, 
the problem reduces to a statistical fit with one 
degree of freedom. For example, suppose that 
we determine that the value of ‘a’ is 0.07. Then 
the equation to fit from the data is: 

E = 0.07 Z 
b

 (8) 

Taking natural logs on both sides yields: 

ln(E) = ln(0.07) + b ln(Z) (9) 

This is a linear fit problem, which is trivial to 
solve. It is also robust and insensitive to noise. 
We can demonstrate this by solving for ‘b’ on 
data sets which have been smoothed to varying 
degrees. 

Table 4 shows the b values determined for the 
LGA case at 07Z on 2002/03/18, along with the 
RMSE values, for various degrees of temporal 
smoothing. 

 
Averaging 

period (min) 
Exponent 

‘b’ 
RMSE 

0 0.58 0.52 

5 0.58 0.52 

10 0.58 0.51 

15 0.57 0.41 

20 0.57 0.40 

25 0.55 0.31 

30 0.55 0.30 

35 0.54 0.27 

40 0.54 0.25 

 

Table 4: Exponent 'b' and RMSE values for 
LGA data from 05Z to 07Z on 2002/03/18 

for varying averaging periods 

The RMSE values drop steadily with smoothing 
as would be expected. The value of ‘b’ is not 
significantly affected. It probably makes sense to 
use a moderate degree of smoothing for the 
calibration, say 15 minutes. 

4.7 Making the forecast 

The sections above present a method for 
calibrating the radar reflectivity Z with gauge-
measured E values. The purpose is to convert a 
reflectivity forecast into a forecast of E values. 
We have also shown how to find the optimal 
values for radar-to-gauge time lag and the mean 
motion vector for the particle trajectory, both of 
which affect the forecast. 

First we need to make a reflectivity forecast at 
the surface. This is done by looking upwind and 
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back in time for the source region of reflectivity 
at the radar beam height which will produce 
precipitation at the ground in the future. 

There are two components of the search 
upwind: (a) particle trajectory and (b) echo 
advection at radar height. The problem can be 
framed in the following way: suppose that the 
lead time is the same as the lag. Then the 
source area for particles reaching the ground is 
the start of the particle trajectory, i.e. the point at 
which it was detected by radar. However, if the 
lead time is longer that the lag, the radar echo 
must first advect into position before the 
particles begin to fall. 

To summarise: 

(a) particle trajectory: forecast lead time <= lag 
time. Search upwind using the mean motion 
vector. 

(b) echo advection: forecast lead time > lag 
time. First search upwind using the mean motion 
vector, then search further upwind using the 
TREC vector. 

This is best illustrated with an example. See 
table 5. 

 
Forecast 

lead 
time 

Radar 
image 
time 

Time 
upwind 

for 
trajectory 

Time 
upwind 

for 
advection 

0 min 25 min ago 25 min 0 min 

5 min 20 min ago 25 min 0 min 

10 min 15 min ago 25 min 0 min 

15 min 10 min ago 25 min 0 min 

20 min 5 min ago 25 min 0 min 

25 min now 25 min 0 min 

30 min now 25 min 5 min 

35 min now 25 min 10 min 

40 min now 25 min 15 min 

45 min now 25 min 20 min 

etc ...    

 

Table 5: finding the source reflectivity for 
various lead times, given a lag of 25 minutes 

Suppose we have the situation found at LGA in 
the case considered above, with a time lag of 25 
minutes. Then the source reflectivity would be 
searched using the time rules in Table 5. 

Once the reflectivity forecast has been 
computed, we apply the Z-E relationship to the 
dBZ values to compute the forecast for E. 

The dBZ forecast is shown in Figure 8 as the 
dotted yellow line, and the E forecast as the 
dotted blue line. 

5 Conclusions 

This study demonstrates the feasibility of making 
short-term visibility forecasts based on NEXRAD 
radar data and ASOS ground measurements. 

Specifically we can conclude the following: 

•  There exists a plausible functional 
relationship between E and Z which has a 
physical basis. 

•  It is possible to correlate reflectivity values 
measured by radar with surface visibility 
measurements from ASOS by taking into 
account the following factors: 

a) the advection of the radar echoes 

b) the time lag from radar to gauge 

c) the vertical wind profile from the radar 
measurement height down to the 
surface. 

•  It is possible to determine the values for 
echo advection, time lag and vertical wind 
profile in a deterministic manner. 

•  Using the above parameters, it is possible to 
make a physically-based forecast of E from 
the radar and ASOS data. 

6 Future improvements 

This study considered the feasibility of making a 
short-term visibility forecast using radar and 
ASOS data. The results are promising. 
However, the following enhancements could 
improve the accuracy of the forecasts. 
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6.1 Enhancements to TREC 

Accurate TREC vectors are vital for producing 
good forecasts. TREC has two known problems 
in snow events: 

•  The NEXRAD radar processor uses a notch 
filter in the zero-velocity region for clutter 
removal. This leads to a gap in the data 
where the radial velocity is close to 0, even if 
there is no clutter. This gap always occurs in 
stratiform situations, with the location of the 
gap depending on the wind direction. 

•  Consistent beam blockage confuses TREC. 
Refer back to OKX radar data in Figure 7. 
There is a narrow sector of missing data in 
the NW quadrant. This is always present for 
OKX at the 0.5 degree elevation. The 
missing data is caused by beam blockage 
from an obstruction on the ground, probably 
a tall structure. You will notice that the 
TREC vectors tend to align themselves with 
the missing data area. This occurs because 
TREC is depends on pattern recognition and 
the movement of those patterns. Since the 
missing sector itself does not move, TREC 
tends not to compute motion across it. 
Therefore the vectors tend to be parallel to 
the missing zone even though the real 
motion is across it. 

We suggest spending some effort on improving 
TREC to handle these types of problem. 

6.2 Discrimination between rain and snow 

It is possible that the reliability of the forecast 
could be improved by discriminating between 
rain and snow events. The ASOS LEDWI 
instrument may prove useful in this regard. 
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