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1. INTRODUCTION

In recent years, the need for alternative veri-
fication approaches to evaluate convective fore-
casts has become apparent. In particular, the
aviation weather community has a strong need for
verification measures that are more clearly tied to
the operational usefulness of the forecasts and are
able to diagnose the sources of the errors in the
forecasts (e.g., Brown et al. 2002). The need for
these alternative approaches also extends to fore-
casts of more standard weather elements (e.g.,
winds, precipitation) produced by mesoscale
numerical weather prediction (NWP) models,
where standard verification approaches penalize
the models’ abilities to capture finer scale features.
These penalty effects have been documented, for
example, by Baldwin (2003), Rife et al. (2004), and
others (e.g., Mass et al. 2002). Developing verifica-
tion methods that satisfy the needs for operation-
ally relevant and diagnostic approaches will be
beneficial for managers who need to understand
the benefits and usefulness of particular types of
forecasts; for operational users of the forecasts
who need to understand how to make use of the
forecasts; and for forecast developers who need to
know how their forecasts can/should be improved.

In response to these needs, several efforts
are in progress to develop verification approaches
that are more diagnostic. Development of these
approaches will eventually lead to verification mea-
sures that are operationally meaningful in the con-
text of specific forecast users, such as air traffic or
water managers. Some developments in this area
are described in this paper, along with examples of
applications to several types of forecasts that have
relevance for aviation forecast developers and
decision makers. The focus here is on quantitative
precipitation forecasts (QPFs) and forecasts of
convection.

*Corresponding author address: Barbara G. Brown,
NCAR, PO Box 3000, Boulder CO 80307-3000; e-mail:
bgb@ucar.edu

The methodology considered here is based
on an “object-oriented” approach to verification.
With the object-oriented approach under develop-
ment, forecast and observed precipitation/convec-
tive areas are reduced to regions of interest that
can be compared to one another in a meaningful
way. In the case of most human-generated fore-
casts, the forecast objects are pre-defined by the
forecaster(s). In contrast, gridded forecasts, which
are the norm for forecasts produced by NWP mod-
els, must be converted to objects.

Following a short discussion of the verifica-
tion problem in Section 2, a general description of
the verification approach is presented in Section 3.
Several examples of applications of the approach
are presented in Section 4, and future work on this
topic is considered in Section 5. Some conclusions
are presented in the final section.

2. MOTIVATION

Standard approaches for verification of spa-
tial QPFs and convective forecasts are based on
simple grid overlays in which the forecast grid is
matched to an observation grid or set of observa-
tion points. For Yes/No forecasts of convective
weather, the forecast/observation (Yes/No) pairs
are counted, to complete the standard 2x2 verifica-
tion contingency table. The counts in this table can
be used to compute a variety of verification mea-
sures and skill scores, such as the Probability of
Detection (POD), False Alarm Ratio (FAR), Critical
Success Index (CSI), and Equitable Threat Score
(ETS) (e.g., Doswell et al. 1990; Wilks 1995). For
continuous variables (e.g., precipitation amount),
the forecasts and observations are used to esti-
mate the mean squared error (MSE), mean abso-
lute error (MAE), and other standard verification
measures for continuous variables (e.g., Wilks
1995; Jolliffe and Stephenson 2003).

An important concern is that this approach
does not provide information needed to diagnose
particular problems with the forecasts, to reveal the
steps that can be taken to improve the forecasts or
to give meaningful guidance to forecast users.



Uncertainty and scaling issues associated with the
observations also are of importance (e.g., Casati et
al. 2004), but are beyond the scope of this paper;
characteristics of convective observations are
treated more fully by Mahoney et al. (2004a,b).
Figure 1 illustrates some of the difficulties
associated with diagnosing forecast problems
using standard verification statistics. This figure
shows five examples of forecast/observation pairs,
with the forecasts and observations represented as
areas. For a forecast user, cases a-d clearly dem-
onstrate four different types or levels of "good-
ness": (a) appears to be a fairly good forecast, just
offset somewhat to the right; (b) is a poorer fore-
cast since the location error is much larger than for
(a); (c) is a case where the forecast area is much
too large and is offset to the right; (d) shows a situ-
ation where the forecast is both offset and has the
wrong shape. Of the four examples, it appears that
case (a) is the "best." Given the perceived differ-
ences in performance, it is dismaying to note that
all of the first four examples have identical basic
verification statistics (POD=0, FAR=1, CSI=0) indi-
cating no skill. Thus, the verification approach is
insensitive to differences in location and shape
errors. Similar insensitivity could be shown to be
associated with timing errors. Moreover, example
(e) - which could be considered a very poor fore-
cast from a variety of points of view - actually has
some skill (POD, CSI >0), suggesting it is a better
forecast than the one depicted in example (a).
These examples demonstrate that it is diffi-
cult to diagnose some of the sources of error in a
forecast using traditional verification statistics
alone. While these measures may be useful for
providing an aggregate measure of overall perfor-
mance or for tracking performance over time, they
tell us little about the sources of errors or their
operational impacts. For example, each type of
error illustrated in Fig. 1 would lead to different air-
craft route impacts, which cannot be distinguished
by examining the overall verification statistics. The
goal of the work described here is to develop a ver-
ification approach that will clearly distinguish the
types of errors associated with a forecast, including
forecasts like those illustrated in Fig. 1.

3. ALTERNATIVE APPROACHES

3.1 Background

The general goal of the object-oriented verifi-
cation approach is to reduce the forecast and
observed convection/precipitation areas to regions
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FIGURE 1. Schematic example of various forecast (F)
and observation (O) combinations.

of interest that can be compared to one another in
a meaningful way. Ebert and McBride (2000) had a
similar goal in development of their entity-based
verification approach, but they approached the
problem from a somewhat different point of view.
The main goals of the Ebert-McBride approach are
to identify displacement vectors and to decompose
the error statistics into their sources (e.g., displace-
ment errors, pattern errors). An approach devel-
oped by Hoffman et al. (1995) also focused on
decomposing the forecast error according to vari-
ous attributes.

In general, the object-oriented approach
requires several steps:

o Objects are defined in the observation and
forecast fields;

o Adjacent objects or objects in close proximity
that naturally “belong” together are merged
into composite objects;

U Forecast and observed objects are optimally
matched to each other;

o Differences between matched forecast and
observed objects are computed for all rele-
vant attributes; other verification measures
(e.g., the size of the intersection area) are
also computed, as well as measures that are
meaningful for forecast developers and oper-
ational forecast users;

o Verification measures are aggregated across
a variety of forecasts to reveal any system-
atic errors and to understand the overall per-
formance of the forecasts.

Specific details of the application of the object-ori-
ented approach depend on the characteristics of



the forecasts and observations. For example, in
the case of forecasts that are already defined as
shapes (e.g., human-generated forecasts), the
forecast objects essentially are pre-defined and it
is only necessary to define the observed objects. In
some cases the observed objects may also be pre-
defined.

More details about the application of the
object-oriented approach are presented in the fol-
lowing sections. Specific information for particular
types of forecasts and observations is also pro-
vided.

3.2 Gridded forecasts and observations

As suggested in the previous section, the
more complex application of the technique involves
situations where both the forecasts and observa-
tions are represented by a grid. In this case,
objects must be defined for both the forecast grid
and the observation grid. However, it is important
to remember that all spatial shapes on a map can
be represented as a gridded field. Thus, the “grid-
ded forecasts and observations” situation is the
most generic application of the approach.

3.2.1 Characterizing areas of precipitation/
convection

The approach for defining the objects, for
both the forecasts and the observations, involves
application of a convolution function (essentially a
smoothing function) to the spatial grid, followed by
use of a threshold to eliminate areas that are not of
interest. Our experience with precipitation fields
has indicated that a circular convolution function
provides good results in most cases. The convolu-
tion filter essentially assigns the average value in
the surrounding circular region to the point in the
center of the circle. Thresholding the convolved
field allows object boundaries to be detected. The
combination of these two steps results in bound-
aries that are similar to those that a human would
draw. It might seem more straightforward to simply
apply a threshold to the raw grid. However, this
approach would lead to fields that are very spiky
and discontinuous and not at all like the regions
that a human would identify subjectively. Finally,
although the field is thresholded, the underlying
values (i.e., precipitation intensity or convection
occurrence/non-occurrence) are retained for fur-
ther analysis.

In summary, only two parameters are
needed for this process: the convolution radius and

the masking threshold. Figure 2 shows an example
of the process applied to precipitation forecast
fields from the Weather Research and Forecasting
(WRF) NWP system on a 22-km grid scale across
the CONUS. Further information about these steps
in the process is presented by Bullock et al. (2004)
and Davis et al. (2004).

3.2.2 Merging and matching objects

The purpose of the merging step is to com-
bine objects that naturally go together (e.g., adja-
cent objects that may appear to be part of the
same weather system), in either the observation or
forecast field. Similarly, the purpose of the match-
ing step is to optimally match forecast and
observed objects that naturally go together. By
nature, these two steps are interrelated; in fact, in
the current version of the approach, the merging of
objects follows directly from the process of match-
ing objects. However, future enhancements to the
system are likely to include additional criteria for
both merging and matching of objects. Merged
objects are referred to as composite objects.

The process of matching objects is based on
an application of fuzzy logic (e.g., Yager et al.
1987). First, a set of attributes or characteristics is
measured for each forecast object and each
observed object. These attributes include the distri-
bution of intensity values within the object (repre-
sented by various percentile values); the object
area; the centroid location; the orientation angle;
and the object curvature. The attributes for each
pair of forecast and observed objects are then
compared by computing the difference or ratio of
the attribute values, and other attributes that apply
to that pair (e.g., the area of overlap) are also com-
puted. Each of the attribute comparison values for
a pair of objects is then mapped to a predefined
“interest” curve to determine the interest value that
is assigned to that pair of objects for that particular
attribute.

An example of one of the interest maps is
shown in Fig. 3. For this attribute comparison - the
ratio of the area of the forecast object to the area of
the observed object - the interest value is low when
the ratio is small (i.e., when the forecast shape is
much smaller than the observed shape); increases
to one when the ratio is near one (i.e., the forecast
object and observed object have about the same
size); and decreases toward zero as the ratio
becomes large (i.e., the forecast object is much
bigger than the observed object).
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FIGURE 2. Example (in 3 dimensions) of a
precipitation forecast field from the WRF model and
the steps in the process of identifying objects in the

field: (a) original precipitation field; (b) convolved

(smoothed) field; (c) “masked” field after a

threshold has been applied, leaving the areas of
interest; (d) original precipitation values underlying
the masked objects.
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FIGURE 3. Example of an interest map, in this case for
the ratio of the area of the forecast object to the area of
the observed object.

Finally, the interest values for all of the
attributes are combined as a weighted sum to
determine an overall interest value that can be
assigned to the pair of objects. These overall inter-
est values are used to objectively define pairs of
matched forecast and observed objects, by com-
paring the overall interest values to a threshold.
Two (several) objects are merged if they both (all)
are matched to the same objects in the other field.
That is, if two forecast objects are matched to the
same observed object, the two forecast objects are
combined into a composite object and matched to
the observed object, and vice versa.

Note that only object pairs with an overall
interest value that exceeds the threshold are
matched to one another. In some cases an object
may not have a matching object in the other field,
and thus it is an “unmatched” object. Such cases
are not unanticipated; essentially these objects are
false alarms if they are in the forecast field and
they are missed objects if they are in the observed
field.

3.2.3 Verification measures

Many different measures can be computed
based on the results of the object matching pro-
cess. In particular, characteristics of each of the
attributes defined in the previous section can be
compared between the forecast and observed
objects. For example, the location of the centroid
(i.e., “center of mass”) of the forecast object rela-
tive to the centroid of the observed object may be
of interest to answer questions regarding whether
the forecast is consistently located too far to the
east or west. Characteristics and differences can
be summarized using various statistical measures



(e.g., mean, median, extreme percentiles) or distri-
bution representations (e.g., histograms, box plots,
scatter plots), as appropriate.

3.3 Forecast shapes and gridded
observations

The object definition and matching process
can be simplified if the forecasts are already
defined as shapes, such as the forecasts and advi-
sories that are commonly produced by human fore-
casters. Examples of shape forecasts are the
Convective Significant Meteorological Advisory (C-
SIGMET; NWS 1991) and the Collaborative Con-
vective Forecast Product (CCFP). Both of these
forecasts are issued by forecasters at the National
Oceanic and Atmospheric Administration (NOAA)
National Centers for Environmental Prediction
(NCEP) Aviation Weather Center (AWC). The C-
SIGMETs are advisories and 1- and 2-h forecasts
of significant convective activity over regions cov-
ering an area at least 3,000 mi in size, with a mini-
mum areal coverage of 40%. Similarly, the CCFP
forecasts are 2-, 4-, or 6-h outlooks for convective
activity with at least 25% coverage over a minimum
area of 3,000 mi2. The CCFP is produced by AWC
forecasters in collaboration with meteorologists at
airline meteorology departments, Center Weather
Service Units, and other facilities.

Essentially two different approaches can be
taken with regard to these types of forecasts: (i)
Optimize the “placement” of the forecasts relative
to the gridded observations; or (ii) Define objects in
the observation field and match them to the fore-
cast shapes using the fuzzy logic approach. Appli-
cations thus far have involved the first approach.
The disadvantage of this approach is that it
requires an immense amount of processing time
because it is necessary to test a large variety of
locations and orientations for the forecast shapes.
The advantage of this more straightforward optimi-
zation approach is that the matching process may
be somewhat less arbitrary; the goal simply is to
find the best possible score given a particular set of
forecast shapes, regardless of whether they clearly
match the corresponding shapes in the observa-
tions. The main advantage of the fuzzy logic shape
matching approach in this context is that it requires
much less processing. Moreover, the object char-
acteristics are clearly defined by the matching pro-
cess. Both approaches leave open the possibility
of future enhancements to the verification proce-
dure in which additional forecast shapes might be

added or forecast shapes might be altered to make
the forecasts more optimally fit the observations.

4, EXAMPLES

4.1 Gridded forecasts and observations

The main application in this context so far
has been to spatial QPFs produced by the WRF
model. The forecasts for this example are on a
nominal 22-km horizontal grid, and are matched to
precipitation observations from the NCEP Stage IV
precipitation analysis (see http://
www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/QandA/
#STAGEX). These observations combine radar
and rain gauge measurements and are produced
hourly on a 4-km grid; for this study the observa-
tions were re-mapped to the 22-km WRF grid.

Figure 4 shows an example of a set of fore-
cast and observed objects for a particular case: the
12-h WREF precipitation forecast valid at 0000 UTC
on 2 July 2001. Although the geographic map is
not shown, the scale of the forecast essentially
includes the whole CONUS. The figure shows a
case in which 10 forecast objects were identified,
along with 11 observed objects (Fig. 4a and c).
However, the merging process led to four compos-
ite forecast objects, four composite observed
objects, and two individual observed objects (Fig.
4b). Each composite forecast object was matched
to one of the composite observed objects, but the
two observed objects that were not merged into a
composite object were not matched to a forecast
object. The final panel in Fig. 4 (Fig. 4d) shows the
overlap of the observed shapes on the forecast
objects and the overlap of the forecast objects on
the observed shapes.

Some basic verification statistics for the
example composite shapes are shown in Tables 1
and 2. Table 1 shows the intersection area (IA) and
symmetric difference (SD) area values, which are
two basic indicators of the correspondence
between the forecast and observed objects. In par-
ticular, IA measures the area of overlap between
the two objects. The SD is the total area covered
by the forecast and observed objects, less the
intersection area. As indicated in Table 1, SD is
generally much larger than IA, which indicates the
differences between the forecast and observed
objects are quite large. In one case (composite
objects A) the forecast and observed objects do
not intersect.

Table 2 shows the values of some basic
attributes of the forecast and observed objects.
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FIGURE 4. Example WRF and Stage 4 case for 12-h WRF precipitation forecasts valid on 2
July 2001 at 0000 UTC: (a) precipitation objects defined by convolution-threshold approach;
(b) Merged and matched areas; (c) individual object identifiers, where colors indicate objects
that are matched and merged (a black number indicates the object was not matched to any
objects in the other field); and (d) overlap areas between forecast and observed objects.



TABLE 1. Verification statistics (intersection area and
symmetric difference area) for example presented in
Fig. 4. Intersection area is the area of overlap between
the forecast and observed object; symmetric difference
is the total area covered by the forecast and observed
object, excluding the intersection area. Both values are

in units of gridboxes.

Symmetric
Composite Intersection Difference (SD)
object Area (IA) Area
A 0 638
B 100 488
C 66 134
D 259 905

TABLE 2. Verification measures/attributes for objects
shown in Fig. 4. Area values are in units of grid boxes;
intensity is in mm; and centroid location is measured in

grid squares.

Attribute WRF Stage IV | Difference
Composite Objects “A”
Centroid X 187 197 -10
Centroid Y 44 31 13
Intensity (0.50) 4.7 25 22
Intensity (0.90) 8.5 13.9 -5.4
Area 319 319 0
Composite Objects “B”

Centroid X 130 144 -14
Centroid Y 36 36 0
Intensity (0.50) 4.7 2.0 2.7
Intensity (0.90) 8.7 9.7 -1.0

Area 355 333 22
Composite Objects “C”
Centroid X 128 121
Centroid Y 93 90
Intensity (0.50) 4.0 24 1.6
Intensity (0.90) 8.5 11.3 -2.8
Area 126 140 -14
Composite Objects “D”
Centroid X 205 215 -10
Centroid Y 102 100 2
Intensity (0.50) 3.8 3.8 0
Intensity (0.90) 7.4 13.8 -6.4
Area 585 838 -253

These attributes measure such characteristics as
the location of the objects (centroid location in the x
and y directions), precipitation intensity 0.50th and
(0.90th percentiles of the intensity distributions)
and overall object size (area). For this simple case,
some basic characteristics of the forecasts can be
inferred. For example, for all composite objects
except one (C), the forecast object is located too
far to the west; in all cases except for one (B), the
forecast object is located at least somewhat too far
to the north; generally the median forecast intensity
is somewhat too large, whereas the 0.90th percen-
tile of forecast intensities is too small (implying the
forecast did not correctly capture extreme precipi-
tation occurrences); and forecast areas C and D
are too small, while forecast area B is somewhat
too large. Finally, it is important to note that two rel-
atively small observed objects were not matched to
any of the forecast objects; the areas of these
observed objects were 7 and 121 grid boxes.
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FIGURE 5. Symmetric difference (SD) and critical
success index (CSI) for matched objects as a function
of lead time (h).

Although these results are based on a single
case, they are indicative of the types of information
that can be obtained from these types of compari-
sons. Figure 5 is an example of one way these sta-
tistics can be summarized across a larger set of
cases. For this analysis, WRF precipitation fore-
casts for July through August 2001 were analyzed;
only objects in the area of the CONUS east of the
Rocky Mountains were considered, to make the
results more homogeneous. The lines in Fig. 5
show the CSI value for matching objects and the
average SD value for matched objects as a func-
tion of lead time. Because the CSl line is relatively
constant for all lead times, it can be inferred from
this figure that the ability to create matched fore-
cast and observed objects does not diminish with
increasing lead time. In contrast, the average SD
value increases with lead time, which indicates that



the errors in the forecasts grow with lead time.
Additional summary plots are presented in Davis et
al. (2004).

4.2 Forecast shapes and gridded
observations

Examples of two types of human-generated
forecasts are considered in this application of the
general object-matching approach: the CCFP and
the C-SIGMETs. Figures 6 and 7 show examples of
each type of forecast, along with the resulting
object optimization. In the case of the CCFP, the
forecast locations and orientations were optimized
directly by searching the grid, rather than by
matching shapes. For the C-SIGMETs, objects in
the observation field were identified and used to
provide an initial guess regarding the optimal loca-
tion of a C-SIGMET. Because no additional fore-
cast areas were included in the forecasts (i.e., the
bias and FAR values could not be changed by
moving the forecast shapes), the optimizations
were based on the value of PODy alone. For these
forecasts, the observations used for verification
represent the “convective constrained area” (CCA)
estimated from radar and lightning measurements.
The CCA is intended to represent the region
around convection where air traffic is impacted by
the weather, and is expressed as a percent cover-
age value across a 3,000 mi? area; for more infor-
mation about computation of the CCA, see
Mahoney et al. (2004a,b).

In the case of the CCFP (Fig. 6), the fore-
casts are optimized by relatively small movements
of the forecast shapes, as shown in Table 3. For
example, shape number 2 is optimized by a small
rotation as well as a small change in location in the
north-south direction. Although these optimization
strategies do not result in large increases in PODy
for the optimal forecasts, they clearly diagnose the
characteristics of the errors in the forecasts.

As noted earlier, the C-SIGMET optimization
process is somewhat more complex than the pro-
cess applied to the CCFP. For the initial step, the
centroid of each C-SIGMET was matched to the
centroid of the best-fit observed CCA object. Fol-
lowing this matching, the location and orientation of
the best-fit forecast shape were optimized by test-
ing a variety of possible choices. The green shapes
in Fig. 7 show the actual C-SIGMET location and
orientation; the gold shapes show the first guess at
an optimal location and orientation; and the blue
shapes show the final optimization.

TABLE 3. CCFP optimization statistics showing
displacement and orientation errors for the sample
forecasts in Fig. 6.

Shape Rotation mov:;nent movg;'nent
number (deg) (km) (km)

1 180 40 -40

2 -5 0 -120

3 -95 -160 0

4 15 -120 80

5 0 -240 -80

The case presented in Fig. 7 shows C-SIG-
METs that were initiated at 0200 UTC on 5 July
2003. The C-SIGMETs were advected using the
motion vector included in the C-SIGMET message,
so all of the C-SIGMETs shown in Fig. 7 were valid
at 0400 UTC. Several small line shapes in Fig. 7
were not changed through the optimization pro-
cess; these shapes could not be matched to a
region with observed convection.

As was the case for the CCFP example, the
changes in the verification scores achieved by the
optimal forecasts was not large; nevertheless, it is
clear that at least in some cases (e.g., observed
shape 12 in Fig. 7) the actual location of the fore-
cast was not optimal; it appears that the forecast
could have been improved by not advecting the C-
SIGMET area as quickly over the 2-h time period.
This type of diagnostic information on its own could
provide useful feedback to the C-SIGMET forecast-
ers. It also could be summarized across a set of
cases to characterize overall performance of the
forecasts.

4.3 Probabilistic forecasts

The issues that have been considered here
essentially apply to all types of spatial forecasts. It
is important to note that although probabilistic fore-
casts provide numerous advantages over the more
common deterministic types of spatial forecasts
that have traditionally been produced and used,
they do not eliminate the need to apply approaches
that are more diagnostic and that are able to indi-
cate the sources of the errors in the forecasts. For
example, traditional verification statistics for proba-
bilistic forecasts are very sensitive to displacement
errors. This effect is illustrated here with a simple
example. In particular, the cartoons in Fig. 8 repre-
sent a spatial probability forecast in which five dif-
ferent probability values can be forecast, levels 0-
4, where level 0 represents the area outside the
blue contours).
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FIGURE 6.Example of CCFP optimization for 2-h CCFP forecasts valid at 2100 UTC on 8 June
2003: (a) original forecasts; and (b) forecasts with optimized location and orientation.
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FIGURE 7. C-SIGMET optimization example for C-SIGMETs valid at 0400 UTC on 5 July 2003. Original
C-SIGMET locations are shown in blue, initial optimal locations in gold, and final optimal locations are
shown in light green. Observed objects are identified using red numbers; black number 12 for that object
is presented for clarity only.

Figure 9 shows the frequency of use of each
of the forecast probability levels. Note that Fore-
casts A and B differ only in the location of the fore-
cast regions relative to the observed region of
convection: the areas representing the forecast
probability levels are the same size for both fore-
cast examples. In particular, the forecasts are the
same size and shape and have the same values.
However, the ellipses in Forecast A completely
overlap the convection area, whereas the forecast
ellipses in Forecast B are displaced to the south-
east.

An overall evaluation of the quality of the
probability forecasts is provided by reliability dia-
grams and relative operating characteristic (ROC)
plots. Together these diagrams measure two
important attributes of the capabilities of the fore-
casts. In particular, the reliability diagrams show

how consistent the relative frequency of occur-
rence of the event is with the forecast probability
value. The ROC measures the forecast’s ability to
discriminate between situations when the event
(i.e., convection) occurs and when it does not
occur; it is a plot of the hit rate vs. the false alarm
rate for various probability thresholds.

The reliability diagrams for the two forecasts
in Fig. 8 are shown in Fig. 10. The lines in this fig-
ure indicate that Forecast A is much more reliable
than Forecast B (or at least has the potential to be
more reliable, depending on the calibration of the
forecast values). In particular, for Forecast B the
frequency of convection varies only slightly with the
probability level, whereas a great deal of differenti-
ation is demonstrated by Forecast A.

The ROC diagrams presented in Figure 11
also show that Forecast A has much more skill



FIGURE 8. Schematic spatial probability forecasts.
Blue contours represent different probability forecast
levels (0-4). Green ellipse represents the observed
Yes field.
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FIGURE 9. Relative frequency of use of forecast
probability levels in Fig. 8.
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FIGURE 10. Reliability diagrams for forecasts shown

in Fig. 8. X-axis is the probability level; Y-axis shows

the frequency of occurrence of the “event” for each of
the probability levels.

than Forecast B. In the ROC diagrams, greater skill
is demonstrated by lines that lie closer to the upper
left corner of the diagram, and it is clear that the
line for Forecast A is much further to the upper left
than the line for Forecast B. Another way to con-
sider this measure of skill is the area under the
ROC curve; clearly, the area under the curve for
Forecast A is much larger than the area under the
curve for Forecast B. These results indicate that
Forecast A is much more skillful than Forecast B in
terms of its ability to correctly classify Yes and No
observations of convection.

These results suggest that the verification
results for spatial probabilistic forecasts can be
strongly impacted by displacement errors. Applica-
tion of object-oriented verification techniques to
these types of forecasts would make it possible to
decompose the errors according to their various
sources (including displacement and shape
errors). This approach would also make it possible
to diagnose the impacts of various improvements
in placement, orientation, size, and so on.

5. FUTURE WORK

A number of tests and enhancements are
planned for the future. For example, the verification
technique will be applied to a wide variety of cases
and to a variety of types of forecasts. The new
cases will allow more complete testing of the meth-
odology. Although it is difficult to objectively test the
approach and unambiguously measure its specific
capabilities, examination of many different cases
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FIGURE 11. ROC plots for two forecasts shown in
Fig. 8.

will allow us to evaluate its consistency and rea-
sonableness. Sensitivity tests will clarify the robust-
ness of the technique relative to the various
settable parameters. New types of forecasts to be
investigated include the National Convective
Weather Forecast (NCWF) and higher resolution
WRF precipitation forecasts. The new version of
the NCWF (NCWEF-2) is in the form of a probability
forecast, which will allow us to test the methodol-
ogy on actual probabilistic forecasts.

A number of additional steps are needed to
make the approach fully functional as a verification
tool. For example, we will identify a set of general
verification measures that summarize the basic
attributes of the forecasts and their quality in the

context of the object-oriented approach. Some of
the likely measures have been described here, but
others will be defined as we examine additional
datasets. In addition to the basic statistics, it will be
necessary and valuable to define specific mea-
sures that are meaningful to particular users and
provide information that is operationally relevant for
particular applications.

Several enhancements to the method have
already been identified. For example, it has
become apparent that the methodology can be
improved by including the time dimension in the
object identification and matching process (much
as a human would do). We also may investigate
the possibility of evaluating objects in three dimen-
sions. Alternative approaches for matching objects
are also being investigated. For example, we are
testing a binary image matching technique devel-
oped by Baddeley (1992) and comparing the
results of this approach to the results of the fuzzy
logic approach. In addition, as the verification tech-
nigue matures, local/regional characteristics (e.g.,
orography) may be incorporated into the matching
process.

Finally, the approach described here clearly
is highly dependent on the scale of the forecasts
and observations. The approach naturally takes
these effects into account through the definition of
the radius and threshold parameters. Thus, scale
effects could simply be handled by applying a vari-
ety of different parameter combinations and exam-
ining the variations in the verification statistics as a
function of the parameters. In addition, we plan to
investigate more direct approaches such as the
wavelet (intensity-scale) decomposition approach
recently developed by Casati et al. (2004).

6. CONCLUSIONS

The object-oriented verification approach for
spatial forecasts has the potential for providing new
useful verification information that cannot be
obtained using standard approaches. The method
described here is complementary to the approach
developed by Ebert and McBride (2000) as well as
other approaches that are under development
(e.g., Baldwin 2003; Casati et al. 2004). Future
work on this topic will lead to verification informa-
tion that is meaningful in a variety of operational
settings and provides feedback to forecast devel-
opers to implement meaningful improvements to
forecasting systems.
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