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1. INTRODUCTION 

 
 Forecasters at the US Air Force 45th Weather 

Squadron (45 WS) use wind and temperature data from 
the tower network over the Kennedy Space Center 
(KSC) and Cape Canaveral Air Force Station (CCAFS) 
to evaluate Launch Commit Criteria and to issue and 
verify temperature and wind advisories, watches, and 
warnings for ground operations. The Spaceflight 
Meteorology Group at the Johnson Space Center in 
Houston, TX also uses these data when issuing 
forecasts for shuttle landings at the KSC Shuttle 
Landing Facility. Systematic biases in these parameters 
at any of the towers could adversely affect an analysis, 
forecast, or verification for all of these operations. In 
addition, substantial geographical variations in 
temperature and wind speed can occur under specific 
wind directions. Therefore, the Applied Meteorology Unit 
(AMU), operated by ENSCO Inc., was tasked to develop 
a monthly and hourly climatology of temperatures and 
winds from the tower network, and identify the 
geographical variation, tower biases, and the magnitude 
of those biases.  

This paper presents a sub-set of results from a 
nine-year climatology of the KSC/CCAFS tower network, 
highlighting the geographical variations based on 
location, month, times of day, and specific wind direction 
regime. Section 2 provides a description of the tower 
mesonetwork and instrumentation characteristics. 
Section 3 presents the methodology used to construct 
the tower climatology including QC methods and data 
processing. The results of the tower climatology are 
presented in Section 4 and Section 5 summarizes the 
paper. 

 
2. TOWER DATA DESCRIPTION 

 
2.1 Brief History 
 
In 1961 and 1962, a research project called the 

Ocean Breeze and Dry Gulch Diffusion program was 
conducted at Cape Canaveral, FL and Vandenberg Air 
Force Base, CA, respectively, by the Air Force 
Cambridge Research Laboratories (Haugen and Fuquay 
1963; Haugen and Taylor 1963). The program was 
designed to address air pollution hazards associated 
with planned launches of the Titan II missile at both 
ranges. Another goal of the program was to provide 
Range Safety personnel and staff meteorologists with an 
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operationally useful system for observing the state of the 
atmospheric boundary layer. Such a system was 
required for staff meteorologists to interpret the fine-
scale meteorological conditions during launch 
operations for evaluating safety considerations, pad 
conditions of winds and wind gusts, and to generate 
precise short-range forecasts at the launch pads. 

As a result of the program, the Weather Information 
Network Display System (WINDS) was developed and 
implemented at Cape Canaveral, FL consisting of eight 
towers in the original operational system in 1964. 
WINDS was expanded in 1966 and 1984, reaching a 
total of 29 towers covering an area of 790 km2. WINDS 
was again expanded to 49 towers in 1987 to cover an 
area of approximately 1600 km2 (Harms et al. 2001), 
and to accommodate forecasting techniques 
recommended by Watson et al. (1989). The network 
was then reduced in the early 1990s to its current 
number of 44 towers. 

 
2.2 Current Mesonetwork 
 
The current tower network consists of 44 towers 

that measure temperature, humidity, and winds at 
various locations and heights. According to Figure 1 
(CSR 2000), the nearest-neighbor spacing between 
towers generally ranges from 3 to 6 km, with the 
smallest spacing over KSC and CCAFS (Figure 2). 
Station spacing increases markedly over mainland 
Florida west of KSC/CCAFS. The average tower 
spacing for the whole network is 5 km. 

The towers are grouped into three categories based 
on their primary use (CSR 2000): 

• Launch critical towers. These towers are 
used in the direct evaluation of launch 
constraints, have the greatest vertical 
measurement extent, and have dual sensors 
on opposite sides of the towers.  

• Safety critical towers. These towers are 
located at or near areas where propellants and 
other hazardous chemicals are stored or 
handled, supporting emergency response 
activities.  

• Forecast critical towers. These towers 
surround the KSC/CCAFS area and support 
the 45 WS in routine weather forecast and 
warning operations.  

Due to poor data availability in the archive, or 
measurement heights inconsistent with the majority of 
the towers in the network, several towers were excluded 
from the climatology. Figure 2 shows only the tower 
locations used for the climatology. It is important to note 



that several of the forecast critical towers over mainland 
Florida suffered from poor data availability due to 
communication limitations and software deficiencies.  

 

 
Figure 1. Distance to the nearest tower, in km. 

 

 
Figure 2. Locations of the towers used in the nine-year 
climatology. Note that this plot does not represent all 
towers within the network. 

 
The primary difference between the instrument 

packages is that the launch/safety critical towers have 
mechanically aspirated temperature sensors whereas 
the forecast critical towers have naturally aspirated 
sensors with a radiation shield. Examples of 
mechanically and naturally aspirated temperature 
sensors are shown in Figures 3 and 4, respectively.  

Table 1 provides a summary of the heights and 
variables measured at each tower location. Forecast 
towers have the simplest sensor suite, consisting of 
1.8 m temperature and humidity measurements, and 

16.5 m wind readings. Safety towers measure 
temperature at 1.8 m and 16.5 m, winds at 3.6 m and 
16.5 m, and do not provide any humidity measurements. 
The launch critical towers measure temperature and 
winds at multiple heights and on opposite sides of the 
towers.  

 

 
Figure 3. A mechanically aspirated 1.8 m temperature 
sensor at tower ID#0403. 

 

 
Figure 4. A naturally aspirated 1.8 m temperature 
sensor with radiation shield at tower ID#1007. 

 
The tallest launch critical tower, 0313 (in KSC), has 

wind, temperature, and humidity sensors at multiple 
levels up to 150 m on the southwest (ID#3131) and 
northeast sides (ID#3132). Launch critical towers 0002, 
0006, and 0110 have sensors up to 62 m on the 
northwest and southeast sides (IDs given in Table 1). 
The only other launch critical towers used in the 
climatology are those at space shuttle launch complexes 
(SLC) 39A and SLC 39B (tower IDs 0394 and 0398), 
which measure temperatures at 1.8 m and 18.3 m, and 
winds and humidity at 18.3 m. In order to simplify the 
climatology, the 18.3 m temperatures and winds at 
towers 0394 and 0398 were grouped together with all 
the 16.5 m winds and temperatures.  

Merritt 
Island 



Table 1. List of the tower identifiers, flag as to whether the data were used in the climatology (blank = yes), 
the tower requirements group, and the heights (in m) of variables measured by each tower. 

   Sensor Complement (heights in m) 
Tower ID Data Used? Group Wind Temperature Humidity 

0001  Safety 3.6, 16.5 1.8, 16.5 N/A 
0002 

(0020, NW side) 
(0021, SE side) 

 Launch 3.6, 16.5, 62.2 1.8, 16.5, 62 1.8, 16.5, 62 

0003  Safety 3.6, 16.5 1.8, 16.5 N/A 
0006 

(0061, NW side) 
(0062, SE side) 

 Launch 3.6, 16.5, 49.4, 62.2 1.8, 16.5, 62 1.8, 16.5, 62 

0019  Forecast 16.5 1.8 1.8 
0022  Forecast 16.5 1.8 1.8 
0108  Safety 3.6, 16.5 1.8, 16.5 N/A 
0110 

(1101, NW side) 
(1102, SE side) 

 Launch 3.6, 16.5, 49.4, 62 1.8, 16.5, 62 1.8, 16.5, 62 

0211 No Safety 3.6, 16.5 1.8, 16.5 N/A 
0300  Forecast 16.5 1.8 1.8 
0303  Safety 3.6, 16.5 1.8, 16.5 N/A 
0311  Safety 3.6, 16.5 1.8, 16.5 N/A 
0313 

(3131, SW side) 
(3132, NE side) 

 Launch 3.6, 16.5, 49.4, 
62, 90, 120, 150 1.8, 16.5, 62, 150 1.8, 16.5, 62, 150 

0403  Safety 3.6, 16.5 1.8, 16.5 N/A 
0412  Safety 3.6, 16.5 1.8, 16.5 N/A 
0415  Safety 3.6, 16.5 1.8, 16.5 N/A 
0418  Forecast 16.5 1.8 1.8 
0421  Forecast 16.5 1.8 1.8 
0506  Safety 3.6, 16.5 1.8, 16.5 N/A 
0509  Safety 3.6, 16.5 1.8, 16.5 N/A 
0511 No Launch 9.1 N/A N/A 
0512 1.8-m T only Launch 9.1 1.8 1.8 
0513 No Launch 9.1 N/A N/A 
0714  Safety 3.6, 16.5 1.8, 16.5 N/A 
0803  Safety 3.6, 16.5 1.8, 16.5 N/A 
0805  Safety 3.6, 16.5 1.8, 16.5 N/A 
0819  Forecast 16.5 1.8 1.8 
1000  Forecast 16.5 1.8 1.8 
1007  Forecast 16.5 1.8 1.8 
1012  Forecast 16.5 1.8 1.8 
1204  Forecast 16.5 1.8 1.8 
1500 No Forecast 16.5 1.8 1.8 
1605 No Forecast 16.5 1.8 1.8 
1612  Forecast 16.5 1.8 1.8 
1617 No Forecast 16.5 1.8 1.8 
2008 No Forecast 16.5 1.8 1.8 
2016 No Forecast 16.5 1.8 1.8 
2202 No Forecast 16.5 1.8 1.8 
9001  Forecast 16.5 1.8 1.8 
9404  Forecast 16.5 1.8 1.8 

SLC 36 No Launch 27.4 N/A N/A 
SLC 39A (0394)  Launch 18.3 1.8, 18.3 18.3 
SLC 39B (0398)  Launch 18.3 1.8, 18.3 18.3 

SLC 40 No Launch 16.5 N/A N/A 



 
3. METHODOLOGY 

 
The development of a nine-year climatology 

involved both automated and manual QC of tower data. 
Once the data were quality controlled, several scripts 
were written to re-format data and calculate statistics on 
a monthly and hourly basis using the S-PLUS® software 
(Insightful Corporation 2000). Data processed in 
S-PLUS were then exported to Microsoft® Excel© and 
the General Meteorological Package (GEMPAK) 
software formats for post-analysis and the creation of a 
graphics tool. The period of record for the analysis was 
February 1995 to January 2004. This section describes 
the procedures used to generate the climatological 
statistics and develop the graphical means for analyzing 
the tower climatology results. 

 
3.1 Data Quality Control (QC) 
 
Five algorithms from the automated QC routine of 

Lambert (2002) were used to remove bad data: 
• An unrealistic value check (e.g. wind speed 

< 0), 
• A standard deviation (σ) check (e.g. 

temperature not within 5 σ of mean), 
• A peak-to-average wind speed ratio check in 

which the peak wind must be within a specified 
factor of the average wind speed (factor value 
dependent on average speed), 

• A vertical consistency check between sensor 
levels at each individual tower, and 

• A temporal consistency check for each 
individual sensor. 

Only a small percentage of the data were flagged 
as erroneous by these QC routines: from 0.6 to 2.1% 
per tower and month, which resulted in a large set of 
good quality data for analysis. There was one known 
instance when good data were eliminated by the 
automated QC. In early May 1999, exceptionally cool 
temperatures occurred compared to all other months of 
May in the period of record. These temperatures were 
so unusually cool that the 5 σ standard deviation check 
removed large portions of the data from the first couple 
days of the month. To alleviate this problem, the 
standard deviation check was modified to 10 σ, but only 
for May data. Refer to Lambert (2002) for more specific 
details of the automated QC algorithm. 

An initial examination of the quality-controlled data 
indicated that manual QC was also required for the 
temperature observations. The methodology for manual 
QC of the 1.8 and 16.5 m temperatures contains the 
following steps: 

1. Determine the percentage availability of data at 
each individual tower location, 

2. Generate frequency distributions of 
temperatures at towers with at least 70% data 
availability, 

3. Identify the towers that have data outliers, then 
generate two-dimensional (2D) frequency 
diagrams of the temperature distributions 

versus UTC hour and year to determine if 
these outliers are bad data, and 

4. Using the combined information in the 2D 
frequency diagrams, along with climate data, 
and adjacent tower information (as necessary), 
identify the exact times and years with bad 
data, and set these data to missing in the 
database. 

This procedure was performed on a month-by-month 
basis in order to remove erroneous temperature 
observations that could not be identified by the 
automated routines. 

 
3.2 Data Processing 
 
All processing, calculations, and data stratification 

were conducted using the S-PLUS software. The S-
PLUS software is a statistical and graphics software 
designed to be able to process large data sets. It has 
numerous features for modeling statistical processes, 
determining statistical distributions, displaying graphical 
data, and running batch scripts. One of the most helpful 
features of S-PLUS used for this climatology is its ability 
to calculate statistics based on categorical data 
stratification. For example, the mean temperature could 
be computed for each category of hour (ranging from 00 
to 23 UTC) or pre-defined wind direction bin. The 
variables and heights processed for climatology 
consisted of temperature at 1.8 m and 16.5 m, 
temperature at 16.5 m minus temperature at 1.8 m 
(representing near-surface stability), wind speed at 
16.5 m, and wind direction standard deviation at 16.5 m. 
Dew point temperature or relative humidity data were 
not examined for this climatology.  

The following statistics were computed for each of 
the variables and heights noted above: 

• Mean,  
• Standard Deviation,  
• Bias, 
• Percent data availability, and 
• Data count and climatological probability for 

wind direction bins. 
All of the above quantities were calculated on an 

hourly basis for all years collectively in each individual 
month, so as to develop a monthly climatology of the 
diurnal variations of each variable/height. Data were 
also stratified by wind direction bins, every 45° from 0° 
to 360°.  

The climatological probabilities of wind direction 
bins were computed by simply dividing the number of 
observations in a particular wind direction bin by the 
total count of observations for all wind directions. These 
probabilities were calculated for each tower individually 
as well as all towers used in the combined climatology. 

Those towers labeled as not used in column 2 of 
Table 1 had insufficient data availability year-round, and 
were therefore excluded from all portions of the 
climatology. Among the towers used in the climatology 
(see columns 1 and 2 in Table 1), only towers with at 
least 70% overall data availability in a given month were 



included in the climatology for that month. The wind 
direction stratification statistics were conducted using all 
towers except those listed as not used in column 2 of 
Table 1. 

 
3.3 Analysis and Display Tools 
 
After all statistics were processed using S-PLUS, 

the resulting data were exported into Excel and 
GEMPAK files for analysis and display. The S-PLUS 
statistics were formatted for Excel pivot charts and 
tables, which served as the primary mechanism for 
displaying the tower climatology results graphically. The 
GEMPAK software was used to develop geographical 
plots and contours of the climatological statistics so that 
the geographical variability across the KSC/CCAFS 
tower network could be examined.  
 
4. SELECTED RESULTS 

 
The climate of east-central Florida is largely driven 

by the complex land-water interfaces of the Atlantic 
Ocean and rivers/lagoons interacting with the land areas 
of KSC, CCAFS, and the Florida mainland (Figure 2). 
Towers with close proximity to water typically have much 
warmer nocturnal temperatures and substantially higher 
wind speeds throughout the year. The following sub-
sections highlight the major mesoscale variations in the 
climatology of KSC/CCAFS. 

 
4.1 Climatological Probabilities of Wind 

Directions 
 
The diurnal distribution of climatological 

probabilities of wind direction ranges (defined in Table 2) 
during the month of July for the entire tower network is 
shown in Figure 5. The hourly values ranging from 00 to 
23 UTC reveal the mean diurnal variation in the 
climatological probabilities of wind direction that typify 
the Florida warm season. From the mid-morning to early 
afternoon hours (~1500−1800 UTC), the east and 
southeast probabilities increase rapidly, representing the 
typical onset time of the sea breeze. After 1800 UTC, 
the wind directions steadily rotate clockwise, with the 
south-southeast bin (180°) probabilities peaking at 0000 
UTC, the south-southwest bin (225°) reaching a 
maximum at 0600 UTC, and the west-southwest bin 
(270°) peaking at 1200 UTC. This steady clockwise 
rotation in the prevailing wind direction illustrates the 
impact of the Coriolis force on the local wind field across 
east-central Florida. The land-sea thermal contrast 
causes the initial rapid increase in onshore (easterly) 
winds during the midday hours, but then the Coriolis 
acts to rotate the winds in a clockwise sense by an 
average of 45° every six hours. 

A distinct annual trend in the favored wind 
directions is evident from the diurnal probabilities plots 
extended to all months, as shown in Figure 6. North and 
northwest winds (315° and 360° bins) are most 
prevalent from November to February (~20−30%), then 
steadily decrease in probability, reaching a minimum in 

June and July (~5−10%). Thereafter, the probabilities of 
north and northwest winds increase again, particularly in 
October. Conversely, the southeast and south wind 
direction bins (135° and 180°) experience a minimum in 
probability from November to February (~5−15%), 
steadily increase to a maximum in July (~30−40%), and 
then decrease thereafter, especially from September to 
October. Most of the other wind direction bins fluctuate 
between 5−15% probabilities throughout the year, 
except for the southwest and west bins during the 
summer months. A much higher occurrence of 
southwest and west winds is found during the nocturnal 
and early morning hours from June to August. Also note 
the relatively high occurrence of easterly winds during 
October, attributed to the first cool fronts of the autumn 
season, and the prevalence of high pressure systems to 
the north of Florida. 
 
Table 2. Wind direction bin labeling convention. 

Wind Direction Bin 
Label Valid Wind Direction Range 

45° 0°< wind direction ≤ 45° 

90° 45°< wind direction ≤ 90° 

135° 90°< wind direction ≤ 135° 

180° 135°< wind direction ≤ 180° 

225° 180°< wind direction ≤ 225° 

270° 225°< wind direction ≤ 270° 

315° 270°< wind direction ≤ 315° 

360° 315°< wind direction ≤ 360° 
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Figure 5. The climatological probability of the wind 
direction falling into eight different bins for all towers 
combined during the nine-year period of record, valid for 
July only. Twenty-four hourly climatological probabilities 
are given along the x-axis. 
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Figure 6. The climatological probability of the winds 
falling into eight different direction bins for all towers 
combined during the nine-year period of record. Twenty-
four hourly climatological probabilities are given in each 
month along the x-axis. 

 
4.2 Temperature/Low-Level Stability 
 
Up to a 5 C difference occurred in the mean 1.8 m 

temperature across the network throughout the year, 
most notable in the pre-dawn hours. Even larger 1.8 m 
temperature variations were found within specific wind 
direction ranges. The variations in 16.5 m temperatures 
were much smaller across KSC/CCAFS, so the near-
surface stability (16.5 m minus 1.8 m temperature) was 
primarily a function of the 1.8 m temperatures. 

Figure 7 shows that the coastal and causeway 
towers had considerably higher mean temperatures than 
the overall network during the nocturnal hours for all 
months of the year. Meanwhile, tower 0819 usually had 
the highest mean 1.8 m temperatures during the time of 
maximum heating and the lowest mean temperatures at 
night.  
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Figure 7. The diurnal range in mean 1.8 m temperatures 
during all months of the year for coastal tower 0022, 
causeway tower 0300, Merritt Island tower 0509, and 
mainland tower 0819, and all towers averaged together 
(ALL). The x-axis contains 24 hours embedded within 
each month. 

 

The mean temperatures across the tower network 
had much more variability with wind direction during the 
cool-season months than during the warm season. From 
November to February, the mean temperatures for the 
northwest and north bins (315° and 360° in Figure 8a, or 
271°−360° wind directions) were 5−10 C or more cooler 
than the southeast and south bins (135° and 180°), 
which tended to be the warmest during these months. 
The 271°−315° wind directions were the coolest of all, 
with a minimum mean temperature of 8 C in January. 
Any wind direction with a southerly component had the 
highest mean temperatures, with the southeasterly 
winds having the highest mean nocturnal temperatures 
in most cool-season months. 

Unlike the cool season, the warm season months 
exhibited much less variation in the mean 1.8 m 
temperatures as a function of wind direction. The mean 
temperatures for most wind direction bins were within 
2.5 C of one another, particularly from July to 
September (Figure 8b). May had the largest range of 
mean temperatures versus wind direction during the 
day, and October had the largest range at night; 
however, October tends to be a transition month 
between the warm/wet and cool/dry season. 
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Mean 6-ft Temp vs. Hour & Wind Dirn: Warm Season
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Figure 8. The hourly mean 1.8 m temperatures versus 
wind direction bin, averaged over all towers in the 
KSC/CCAFS network, valid for (a) the cool-season 
months (November-April), and (b) the warm-season 
months (May-October). 

 

(a) 

(b) 



The difference between the 16.5 and 1.8 m 
temperatures (i.e. near-surface stability) shows some 
interesting variation throughout the year. From March to 
September, the mean near-surface stability tends to 
increase steadily during the night until sunrise, thereafter 
decreasing abruptly with the onset of solar heating 
(Figure 9). From November to January, a different 
pattern appears in the nocturnal mean near-surface 
stability. The stability values peak at about 0300 UTC 
and then gradually decrease during the remainder of the 
night. The shift in the nocturnal stability pattern occurs at 
nearly all towers within the network. October and 
February appear to be transition months between these 
distinctly difference behaviors. This climatological 
behavior in near-surface stability could be used as first-
order guidance by the 45th Space Wing Range Safety. 
These data could help Range Safety assess the times of 
the day and year when stability poses the greatest risk 
for a potentially hazardous plume or shock wave 
adversely affecting populated areas during launch 
operations at CCAFS. 
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Figure 9. The diurnal range in the mean 16.5 m minus 
1.8 m temperatures for all months of the year at the 
selected towers shown in the legend. 

 
The physical explanation for the different near-

surface stability behaviors between the winter months 
and rest of the year can be found in the mean wind 
speed plot at tower 0303 (Figure 10). During the months 
when stability increased steadily throughout the night, 
the mean wind speeds at tower 0303 tended to 
decrease steadily during the same hours. However, 
during the winter months, wind speeds initially dropped 
rapidly with sunset, but then leveled off for the 
remainder of the night instead of continuing to decrease. 
Similar nocturnal mean wind speed trends occurred at 
most other towers in the network (not shown). 
Therefore, the stability peak near 0300 UTC during the 
winter months is probably mechanical in nature, since 
the initial sharp decrease in wind speeds at sunset led to 
a rapid decrease in 1.8 m temperatures. The mean 
stability then levels off or slightly decreases during the 
remainder of the night because of the nearly constant 
wind speed that prevailed due to a higher frequency of 
synoptic-scale weather features in the Florida cool 
season. 
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Figure 10. Hourly mean wind speeds at tower 0303 for 
all months of the year. 

 
4.3 Wind Speed 
 
Mean domain-wide wind speeds were generally 2−3 

m s-1 during the nocturnal hours and 3.5−4.5 m s-1 
during the day. The strongest mean nocturnal wind 
speeds of 3−3.5 m s-1 occurred from October to March 
(the synoptic season). Meanwhile, the strongest mean 
daytime wind speeds of 4−5 m s-1 occurred from 
February to May, probably due to a combination of 
synoptic systems and strengthening sea-breeze 
circulations during this latter portion of the Florida dry 
season.  

Coastal and causeway towers tended to have mean 
wind speeds 1−2 m s-1 stronger than the overall network 
mean. Meanwhile, mainland towers had mean speeds 
weaker than the network mean by about the same 
magnitude. The resulting gradient in the mean wind 
speed across the network was typically 2.5−4 m s-1 over 
a distance of 20−30 km, with the strongest speeds 
occurring along the Atlantic coastal towers. 

Figure 11 illustrates this contrast between the winds 
speeds at Atlantic coastal and mainland towers. The 
coastal tower 0022 and causeway tower 0300 generally 
had much higher wind speeds compared to Merritt 
Island tower 0509 and mainland tower 0819. Tower 
0022 and 0300 were both much higher than the overall 
network averages (ALL in Figure 11), and had very 
similar diurnal speed distributions except for October 
through January. During these months, nocturnal wind 
speeds were much higher at coastal tower 0022 
compared to the causeway tower, particularly in 
October, when east and northeasterly winds tended to 
occur more frequently than other directions (Figure 6). 
The predominance of northeasterly wind directions led 
to stronger winds along the immediate coast compared 
to the causeway tower, because of the frictional effects 
as winds cross CCAFS upstream of tower 0300. 
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Figure 11. Hourly mean wind speeds for all months of 
the year at towers 0022, 0300, 0509, 0819, and all 
towers averaged together (ALL). 

 
In the spring and summer months when daily sea 

breezes predominate, the time of maximum wind speeds 
was delayed by a few hours after peak heating. 
Meanwhile, during the winter months, the time of the 
maximum mean wind speed corresponded well with the 
time of maximum heating. These relationships are 
illustrated in Figure 12, which shows an overlay of the 
hourly mean temperature differences between the near-
shore buoy 41009 and the overall tower network 
average of 1.8 m temperature (Tb-Tn), and the mean 
wind speed normalized by the monthly mean value (all-
mean). This normalization is done by simply subtracting 
each month’s overall mean speed from the individual 
hourly mean wind speeds, in order to have similar 
scales along the y-axis for easier comparison. Since the 
mean air temperature at the buoy varies only by about a 
degree Celsius on a diurnal basis, most of the variation 
in Tb-Tn results from the diurnal heating cycle in the 
tower network. Minimum Tb-Tn corresponds to the time 
of maximum heating within the tower network. 

During the spring and summer months, a 3−4 hour 
separation occurs between the time of maximum heating 
(given by solid lines in Figure 12a) and the time of 
maximum mean wind speed (given by dashed lines). 
The delay in peak wind speeds during the spring and 
summer is consistent with the high frequency of sea 
breezes, caused by the temperature contrasts between 
the air over land and water. The sea breeze circulation 
strength actually peaks after the time of maximum 
contrast between the air temperatures over land and 
water. Convective outflows may also play a minor role in 
the higher magnitude of the mean wind speeds during 
the late afternoon hours in the summer months.  

Meanwhile, from November to January, when sea 
breezes occur less frequently, the time of maximum 
heating and peak wind speed are nearly coincident 
(Figure 12b). Also, the wind speed and land-ocean 
temperature differential curves are 180° out of phase, 
indicating that wind speeds increase in proportion to the 
daytime heating across the tower network. These 
relationships suggest that synoptic pressure gradients 
and vertical mixing through surface heating and 
destabilization drive the strength of winds during the 
winter months.  
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Buoy/Tower Temp Diff & Normalized Speed: Oct-Mar
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Figure 12. Plot of the hourly differences between the 
buoy and tower network mean 1.8 m temperatures 
(Tb−Tn), and the hourly mean wind speed normalized by 
the monthly mean wind speed (all-mean), valid for the 
months of (a) April to September, and (b) October to 
March. Solid vertical lines represent the time of 
minimum Tb−Tn (i.e. time of maximum tower 
temperatures) and dashed vertical lines represent the 
time of the maximum mean wind speed.  

 
The bias of wind speed under specific wind 

directions is nearly invariant with the season or time of 
year, based on the plots of selected towers in Figure 13. 
During both the cool season (Figure 13a) and warm 
season (Figure 13b), coastal tower 0022 had the highest 
positive bias with northeast to east winds, and also for 
westerly to northwesterly winds. The causeway tower 
0300 exhibited the largest positive wind speed bias for 
south-southeast winds (180° bin) during both seasons, 
as these directions create the largest fetch over water 
upstream of this tower (refer to Figure 2).  

Conversely at mainland tower 0819, a negative bias 
between -1 and -2 m s-1 prevailed year-round for all wind 
directions except for the west/northwest direction (315° 
bin), which yielded less negative biases. The CCAFS 
tower 0303 and Merritt Island towers 0509 and 3131 fell 
between the coastal/causeway and mainland biases. 
Since the wind speed variations by wind direction across 
KSC/CCAFS are independent of the time of year, it 
appears that the geographical features of KSC/CCAFS 
are the primary drivers for the observed patterns of wind 
speed variations. 

(a) 

(b) 

(4 hour 
differences) 
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Bias of 54-ft Wind Speed vs. WD Bin & Hour: May-Oct
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Figure 13. The hourly bias of 16.5 m wind speeds 
(m s−1) as a function of wind direction bin at coastal 
tower 0022, causeway tower 0300, CCAFS tower 0303, 
Merritt Island tower 3131 (i.e. 0313), and mainland tower 
0819, valid for (a) the cool-season months, and (b) the 
warm season months. 

 
5. SUMMARY 

 
This paper presented an excerpt from a nine-year, 

monthly meso-climatology of temperatures and winds at 
1.8 m and 16.5 m for the KSC/CCAFS tower network in 
east-central Florida. Data were analyzed at 33 selected 
tower locations. All 33 towers provided 1.8 m 
temperature and 16.5 m wind data archived at 5 minute 
intervals, while 19 towers also provided archived 16.5 m 
temperature data every 5 minutes.  

The meso-climate of KSC/CCAFS is largely driven 
by the complex land-water interfaces of KSC/CCAFS. 
Towers with close proximity to water typically exhibited 
much warmer nocturnal temperatures and substantially 
higher wind speeds throughout the year. Up to a 5 C 
difference occurred in the mean 1.8 m temperature 
across the tower network throughout the year, most 
notable in the pre-dawn hours.  

Mean domain-wide wind speeds were generally 2−3 
m s-1 during the nocturnal hours and 3.5−4.5 m s-1 
during the day. The strongest mean nocturnal wind 
speeds occurred from October to March (the synoptic 
season). The strongest mean daytime wind speeds 
occurred from February to May, probably due to a 

combination of synoptic systems and strengthening sea-
breeze circulations.  

Coastal and causeway towers tended to have the 
strongest overall mean wind speeds while the mainland 
towers had the weakest speeds. The resulting gradient 
in the mean wind speed across the network was typically 
2.5−4 m s-1 over a distance of 20−30 km, with the 
strongest speeds occurring at the Atlantic coast.  

Most biases were largely a result of the 
geographical variability, which tended to mask any 
smaller instrument, processing, and exposure errors. 
The coastal and causeway towers had cool (warm) 
biases during the day (night) compared to Merritt Island 
and mainland towers. The towers located near water 
bodies also had high wind speed biases, whereas the 
mainland towers experienced low wind speed biases 
relative to the overall network average. Since all the 
space launch complexes are nearly coincident with the 
Atlantic coast, forecasters can expect vehicles wind 
exposures on the high end of the climatology results. 
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