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1. INTRODUCTION

This paper presents the results of an empirical evalua-
tion of the probabilities predicted by seven supervised
learning algorithms. The algorithms are SVMs, neu-
ral nets, decision trees, memory-based learning, bagged
trees, boosted trees, and boosted stumps. For each al-
gorithm we test many different variants and parameter
settings: we compare ten styles of decision trees, neural
nets of many sizes, SVMs using different kernels, etc. A
total of 2000 models are tested on each problem.

Experiments with seven classi£cation problems suggest
that neural nets and bagged decision trees are the best
learning methods for predicting well-calibrated proba-
bilities. However, while SVMs and boosted trees are not
well calibrated, they have excellent performance on other
metrics such as accuracy and area under the ROC curve
(AUC). We analyze the predictions made by these mod-
els and show that they are distorted in a speci£c and con-
sistent way. To correct for this distortion, we experiment
with two methods for calibrating probabilities:

Platt Scaling: a method for transforming SVM outputs
from [−∞,+∞] to posterior probabilities (Platt, 1999)

Isotonic Regression: the method used by Elkan and
Zadrozny to calibrate predictions from boosted naive
bayes, SVM, and decision tree models (Zadrozny &
Elkan, 2002; Zadrozny & Elkan, 2001)

Comparing the performance of the learning algorithms
before and after calibration, we see that calibration sig-
ni£cantly improves the performance of boosted trees and
SVMs. After calibration, these two learning methods
outperform neural nets and bagged decision trees and be-
come the best learning methods for predicting calibrated
posterior probabilities. Boosted stumps also bene£t sig-
ni£cantly from calibration, but their performance overall
is not competitive. Not surprisingly, the two model types
that were well calibrated to start with, neural nets and
bagged trees, do not bene£t from calibration.

2. METHODOLOGY

2.1. Learning Algorithms

This section summarizes the parameters used with each
learning algorithm.

KNN: we use 26 values of K ranging from K = 1 to
K = |trainset|. We use KNN with Euclidean distance
and distance weighted by gain ratio. We also use distance
weighted KNN, and locally weighted averaging.

ANN we train neural nets with backprop varying the
number of hidden units {1,2,4,8,32,128} and momen-
tum {0,0.2,0.5,0.9}. We don’t use validation sets to do
weight decay or early stopping. Instead, we stop the nets
at many different epochs so that some nets under£t or
over£t.

Decision trees (DT): we vary the splitting criterion,
pruning options, and smoothing (Laplacian or Bayesian
smoothing). We use all of the tree models in Buntine’s
IND package: BAYES, ID3, CART, CART0, C4, MML,
and SMML. We also generate trees of type C44LS (C4
with no pruning and Laplacian smoothing)(Provost &
Domingos, 2003), C44BS (C44 with Bayesian smooth-
ing), and MMLLS (MML with Laplacian smoothing).

Bagged trees (BAG-DT): we bag 25-100 trees of
each tree type. Boosted trees (BST-DT): we
boost each tree type. Boosting can over£t, so we
use 2,4,8,16,32,64,128,256,512,1024 and 2048 steps
of boosting. Boosted stumps (BST-STMP): we
use stumps (single level decision trees) generated
with 5 different splitting criteria boosted for 2,4,8,
16,32,64,128,256,512,1024,2048,4096,8192 steps.

SVMs: we use the following kernels in SVM-
Light(Joachims, 1999): linear, polynomial degree 2 &
3, radial with width {0.001,0.005,0.01,0.05,0.1,0.5,1,2}
and vary the regularization parameter by factors of ten
from 10−7 to 103.

With ANN’s, SVM’s and KNN’s we scale attributes to
0 mean 1 std. With DT, BAG-DT, BST-DT and BST-
STMP we don’t scale the data. In total, we train about
2000 different models on each test problem.

2.2. Performance Metrics

Finding models that predict the true underlying probabil-
ity for each test case would be optimal. Unfortunately,
we usually do not know how to train models to predict
true underlying probabilities. Either the correct paramet-
ric model type is not known, or the training sample is too



small for model parameters to be estimated accurately, or
there is noise in the data. Typically, all of these problems
occur to varying degrees. Moreover, usually we don’t
have access to the true underlying probabilities. We only
know if a case is positive or not, making it dif£cult to
detect when a model predicts the true underlying proba-
bilities.

Some performance metrics are minimized (in expecta-
tion) when the predicted value for each case is the true
underlying probability of that case being positive. We
call these probability metrics. The probability metrics
we use are squared error (RMS), cross-entropy (MXE)
and calibration (CAL). CAL measures the calibration of
a model: if the model predicts 0.85 for a number of cases,
it is well calibrated if 85% of cases are positive. CAL is
calculated as follows: Order all cases by their predictions
and put cases 1-100 in the same bin. Calculate the per-
centage of these cases that are true positives to estimate
the true probability that these cases are positive. Then
calculate the mean prediction for these cases. The ab-
solute value of the difference between the observed fre-
quency and the mean prediction is the calibration error
for these 100 cases. Now take cases 2-101, 3-102, ... and
compute the errors in the same way. CAL is the mean of
all these binned calibration errors.

Other metrics don’t treat predicted values as probabili-
ties, but still give insight into model quality. Two com-
monly used metrics are accuracy (ACC) and area un-
der ROC curve (AUC). Accuracy measures how well the
model discriminates between classes. AUC is a mea-
sure of how good a model is at ordering the cases, i.e.
predicting higher values for instances that have a higher
probability of being positive. See (Provost & Fawcett,
1997) for a discussion of ROC from a machine learning
perspective. AUC depends only on the ordering of the
predictions, not the actual predicted values. If the order-
ing is preserved it makes no difference if the predicted
values are between 0 and 1 or between 0.49 and 0.51.

2.3. Data Sets

We compare the algorithms on 7 binary classi£cation
problems. The data sets are summarized in Table 1.∗

3. Calibration Methods

3.1. Platt Calibration

Let the output of a learning method be f(x) . To get cal-
ibrated probabilities, pass the output through a sigmoid:

P (y = 1|f) =
1

1 + exp(Af + B)
(1)

∗Unfortunately, none of these are meteorology data.

Table 1. Description of the test problems

PROBLEM #ATTR TRAIN SIZE TEST SIZE %POZ

ADULT 14/104 4000 35222 25%
COV TYPE 54 4000 25000 36%
LETTER.P1 16 4000 14000 3%
LETTER.P2 16 4000 14000 53%
MEDIS 63 4000 8199 11%
SLAC 59 4000 25000 50%
HS 200 4000 4366 24%

where the parameters A and B are £tted using maximum
likelihood estimation from a £tting training set (fi, yi).
Gradient descent is used to £nd A and B such that they
are the solution to:

argmin
A,B

{−
∑

i

yilog(pi) + (1− yi)log(1− pi)}, (2)

where
pi =

1

1 + exp(Afi + B)
(3)

Two questions arise: 1) where does the sigmoid training
set (fi, yi) come from? 2) how to avoid over£tting to this
training set?

One possible answer to question 1 is to use the same
training set used for training the model: for each example
(xi, yi) in the training set, use (f(xi), yi) as a training
example for the sigmoid. Unfortunately, if the learning
algorithm can learn complex models it will introduces
unwanted bias in the sigmoid training set that can lead to
poor results (Platt, 1999).

An alternate solution is to split the training data into a
model training set and a calibration validation set. After
the model is trained on the £rst set, the predictions on the
validation set are used to £t the sigmoid. Cross valida-
tion can be used to allow both the model and the sigmoid
to be trained on the full data set. The training data is
split into C parts. The model is learned using C-1 parts,
while the C-th part is held aside for use as a calibration
validation set. From each of the C validation sets we ob-
tain a sigmoid training set that does not overlap with the
model training set. The union of these C validation sets
is used to £t the sigmoid parameters. Following Platt, all
experiments in this paper use 3-fold cross-validation to
estimate the sigmoid parameters

As for the second question, an out-of-sample model is
used to avoid over£tting to the sigmoid train set . If there
are N+ positive examples and N− negative examples in
the train set, for each training example Platt Calibration
uses target values y+ and y− (instead of 1 and 0, respec-



Table 2. Performance of learning algorithms prior to calibration
MODEL ACC AUC RMS MXE CAL

ANN 0.8720 0.9033 0.2805 0.4143 0.0233
BAG-DT 0.8728 0.9089 0.2818 0.4050 0.0314
KNN 0.8688 0.8970 0.2861 0.4367 0.0270
DT 0.8433 0.8671 0.3211 0.5019 0.0346
SVM 0.8745 0.9067 0.3390 0.5767 0.0765
BST-STMP 0.8470 0.8866 0.3659 0.6241 0.0502
BST-DT 0.8828 0.9138 0.3050 0.4810 0.0542

tively), where

y+ =
N+ + 1

N+ + 2
; y− =

1

N− + 2
(4)

For a more detailed treatment, and a justi£cation of these
particular target values see (Platt, 1999). The middle row
of Figure 1 shows sigmoids £tted with Platt Scaling on
the seven test problems using 3-fold CV.

3.2. Isotonic Regression

An alternative to Platt Calibration is Isotonic Regression
(Robertson et al., 1988). Zadrozny and Elkan used Iso-
tonic Regression to calibrate predictions made by SVMs,
Naive Bayes, boosted Naive Bayes, and decision trees
(Zadrozny & Elkan, 2002; Zadrozny & Elkan, 2001).

The basic assumption in Isotonic Regression is:

yi = m(fi) + εi (5)

where m is an isotonic (monotonically increasing) func-
tion. Then, given a train set (fi, yi), the Isotonic Regres-
sion problem is £nding the isotonic function m̂ such that

m̂ = argminz

∑

(yi − z(fi))
2 (6)

One algorithm for Isotonic Regression is pair-adjacent
violators (PAV) (Ayer et al., 1955) presented in Table 3.
PAV £nds a stepwise constant solution for the Isotonic
Regression problem.

Table 3. PAV Algorithm

Algorithm 1. PAV algorithm for estimating posterior
probabilities from uncalibrated model predictions.

1 Input: training set (fi, yi) sorted according to fi

2 Initialize mi,i = yi, wi,i = 1
3 While ∃ i s.t. m̂k,i−1 ≥ m̂i,l

Set wk,l = wk,i−1 + wi,l

Set m̂k,l = (wk,i−1m̂k,i−1 + wi,lm̂i,l)/wk,l

Replace m̂k,i−1 and m̂i,l with m̂k,l

4 Output the stepwise const. function generated by m̂

As in the case of Platt calibration, if we use the model
training set (xi, yi) to get the training set (f(xi), yi) for
Isotonic Regression, we introduce unwanted bias. The
same methods discussed in Section 3.1 can be used to

get an unbiased training set. For the experiments with
Isotonic Regression we again use the 3-fold CV method-
ology used with Platt Scaling. The bottom row of Fig-
ure 1 shows functions £tted with Isotonic Regression for
the seven test problems.

4. EMPIRICAL RESULTS
Table 2 shows the average performance of the learning
algorithms on the seven test problems. For each prob-
lem, we select the best model trained with each learning
algorithm using a 1K validation set and report it’s per-
formance on large £nal test sets. The learning methods
with best performance on the probability metrics (RMS,
MXE, and CAL) are neural nets and bagged decision
trees. The learning methods with the poorest perfor-
mance are SVMs †, boosted stumps, and boosted deci-
sion trees. Interestingly, although SVMs and the boosted
models predict poor probabilities, they outperform neu-
ral nets and bagged trees on accuracy and AUC. This
suggests that SVMs and the boosted models are learn-
ing good models, but their predictions are distorted and
thus have poor calibration.

Model calibration can be visualized through reliability
diagrams (DeGroot & Fienberg, 1982). To construct a re-
liability diagram, the prediction space is discretized into
ten bins. Cases with predicted value between 0 and 0.1
fall in the £rst bin, between 0.1 and 0.2 in the second
bin, etc. For each bin, the mean predicted value is plotted
against the true fraction of positive cases. If the model is
well calibrated the points will fall near the diagonal line.

Figure 1 shows histograms and reliability diagrams for
boosted trees after 1024 steps of boosting on seven test
problems. The results are for large test sets not used for
training or validation. For six of the seven data sets the
predicted values after boosting do not approach 0 or 1.
The one exception is LETTER.P1, a highly skewed data
set that has only 3% positive class. On this problem some
of the predicted values do approach 0, though careful ex-
amination of the histogram shows that even on this prob-
lem there is a sharp drop in the number of cases predicted

†SVM predictions are scaled to [0,1] by (x−min)/(max−
min).
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Figure 1. Histograms of predicted values and reliability diagrams for boosted decision trees.

Table 4. Squared error and cross-entropy performance of learning algorithms
SQUARED ERROR CROSS-ENTROPY

ALGORITHM RAW PLATT ISOTONIC RAW PLATT ISOTONIC

BST-DT 0.3050 0.2650 0.2652 0.4810 0.3727 0.3745
SVM 0.3303 0.2727 0.2719 0.5767 0.3988 0.3984
BAG-DT 0.2818 0.2815 0.2799 0.4050 0.4082 0.3996
ANN 0.2805 0.2821 0.2806 0.4143 0.4229 0.4120
KNN 0.2861 0.2871 0.2839 0.4367 0.4300 0.4186
BST-STMP 0.3659 0.3098 0.3096 0.6241 0.4713 0.4734
DT 0.3211 0.3212 0.3145 0.5019 0.5091 0.4865

to have probability near 0.

The reliability plots in Figure 1 display roughly sigmoid-
shaped reliability diagrams, motivating the use of a sig-
moid to transform predictions into calibrated probabili-
ties. The reliability plots in the middle row of the £gure
also show sigmoids £tted using Platt’s method. The reli-
ability plots in the bottom of the £gure show the function
£tted with Isotonic Regression.

To show how calibration transforms the predictions, we
plot histograms and reliability diagrams for the seven
problem for boosted trees after 1024 steps of boosting,
after Platt Calibration (Figure 2) and after Isotonic Re-
gression (Figure 3). The reliability diagrams for Isotonic
Regression are very similar to the ones for Platt Scal-
ing, so we omit them in the interest of space. The £gures
show that calibration undoes the shift in probability mass
caused by boosting: after calibration many more cases
have predicted probabilities near 0 and 1. The reliabil-
ity diagrams are closer to the diagonal, and the S shape
characteristic of boosting’s predictions is gone. On each

problem, transforming the predictions using either Platt
Scaling or Isotonic Regression yields a signi£cant im-
provement in the quality of the predicted probabilities,
leading to much lower squared error and cross-entropy.
The main difference between Isotonic Regression and
Platt Scaling for boosting can be seen when comparing
the histograms in the two £gures. Because Isotonic Re-
gression generates a piecewise constant function, the his-
tograms are quite coarse, while the histograms generated
by Platt Scaling are smooth and easier to interpret.

Table 4 compares the RMS and MXE performance of the
learning methods before and after calibration. Figure 4
shows the squared error results from Table 4 graphically.

After calibration with Platt Scaling or Isotonic Regres-
sion, boosted decision trees have better squared error and
cross-entropy than the other learning methods. The next
best methods are SVMs, bagged decision trees and neu-
ral nets. While Platt Scaling and Isotonic Regression sig-
ni£cantly improve the performance of the SVM models,
they have little or no effect on the performance of bagged
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Figure 2. Histograms of predicted values and reliability diagrams for boosted trees calibrated with Platt’s method.
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Figure 3. Histograms of predicted values for boosted trees calibrated with Isotonic Regression.
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Figure 4. Squared error performance of learning algorithms

decision trees and neural nets. While neural nets and
bagged trees yield better probabilities before calibration,
Platt Scaling or Isotonic Regression improve the calibra-
tion of maximum margin methods enough for boosted
trees and SVMs to become the best methods for predict-
ing good probabilities once calibrated.
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