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1. INTRODUCTION 
 
 NOAA's National Weather Service (NWS) has 
implemented a National Digital Forecast Database 
(NDFD) that provides its customers and partners 
access to gridded forecasts of sensible weather 
elements (e.g., cloud cover, maximum tempera-
ture).  As described by Glahn and Ruth (2003), the 
NDFD contains a mosaic of digital forecasts pro-
duced by NWS field offices working in collabora-
tion with the National Centers for Environmental 
Prediction (NCEP).  Table 1 lists the NDFD 
weather elements as well as their operational 
status at this time.  Customers and partners are 
able to use NDFD forecasts to create a wide range 
of text, graphic, gridded, and image products of 
their own. 

All NDFD weather elements except PoP12 
represent single-value forecasts.  The single-
valued nature of the NDFD can be viewed as one 
of its limitations since all weather forecasts include 
some amount of uncertainty.  The NWS recog-
nizes this limitation, and the NWS Strategic Plan 
for 2005-2010 (NWS 2005) commits the agency to 
"including information on forecast uncertainty to 
enhance customer decision processes."  Consis-
tent with this goal, the Meteorological Develop-
ment Laboratory (MDL) has been investigating 
techniques for assessing forecast uncertainty in 
the NDFD and generating products based on this 
information. 

Figure 1 shows the basic structure of the 
Numeric Uncertainty Assessment of NDFD via 
Climatology and Ensembles (NUANCE).  The 
NDFD forecast for a weather element, recent 
NDFD performance, and related guidance are all 
used to quantify the expected distribution of ob-
servations for that weather element. Initial efforts 
have focused on MaxT and MinT.  This is because 
these two weather elements are accessed fre-
quently by NDFD users, and because a consider-

able amount of data is available that describe their 
climatological behavior.  MDL plans to use NU-
ANCE to generate guidance products that allow 
NWS customers and partners to make better use 
of NDFD forecasts. 
 
2. METHODS 
 

As with other guidance techniques, NUANCE 
will be implemented in two distinct phases, devel-
opment and implementation.   

The development process begins by amassing 
matched pairs of forecasts (denoted by f) and ob-
servations (denoted by x) to form a set of devel-
opmental data.  The developmental data provide 
input to form a model from which the joint distribu-
tion of forecasts and observations, p(f,x), is in-
ferred.  Additional diagnostic data (denoted by d) 
can be added to further refine the modeled distri-
bution. 

Table 1:  NDFD Weather Elements 
 

Operational 

Maximum/Minimum Temperature (MaxT/MinT) 

Probability of Precipitation (PoP12) 

Dew Point 

Temperature 

Weather 

Experimental 

Sky Cover 

Quantitative Precipitation Forecast (QPF) 

Wind Direction and Speed 

Snow Amount 

Significant Wave Height 

Apparent Temperature 

Relative Humidity 
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The implementation process uses the mod-
eled distribution, p(f,x,d), and current values of x 
and d to infer a conditional distribution of the ob-
servations given the forecast and diagnostic data, 
p(x | f,d).   

 
a. Data sources 

 
The NDFD provides forecast values for regu-

larly-spaced points on grids with mesh lengths that 
are close to 5 km.  Efforts are underway within the 
NWS to routinely create a gridded Analysis of Re-
cord (AOR) on a similar spatial scale.  The NDFD 
and the Analysis of Record are expected to be 
well-matched sources of f and x.  Since the AOR 
is not operationally available, we have been using 
point data as sources of f and x.  Observations are 
taken from hourly surface reports (generally en-
coded in METAR); forecasts are taken from the 
NDFD gridpoint nearest to the verifying surface 
observation.   

Ensemble forecasting techniques seem likely 
to provide a useful source of diagnostic data.  
NCEP routinely provides a number of products 
that show the variability among the members of its 
ensemble NWP runs.  Model Output Statistics 
(MOS; Glahn and Lowry 1972) generated from 
ensemble runs of the Global Forecast System 
(GFS; ENSMOS) can also provide diagnostic data 
for NUANCE. 

The diagnostic data that have been studied to 
date for NUANCE are the ENSMOS forecasts for 
MaxT.  Erickson (1996) describes the basic proc-
esses that are used to apply MOS equations to the 
individual members of an ensemble run.  Archive 
files that contain the MOS forecasts generated 
from each ensemble member are available.  
These archive files include 11 separate ENSMOS 
bulletins for each model run.  One set of forecasts 
is generated by applying the MOS equations to the 
so-called control (unperturbed) run of the model.  
Five of the ENSMOS forecasts come from the en-
semble members that were perturbed in a “posi-
tive” way, and five of the ENSMOS forecasts come 
from the ensemble members that were perturbed 
in a “negative” way. 

b. Transformation to percentiles 
 
In prototyping NUANCE, it has proved useful 

to transform both the forecasts and the observa-
tions from their native values to climatological per-
centiles.  This addresses a perennial problem in 
modeling p(f,x), i. e., the lack of cases in the de-
velopmental data with extreme values of either f or 
x.  One can expect this problem to be exacerbated 
by the relatively short length of the NDFD's archive 
of forecasts (little more than one year).  The input 
provided by human forecasters into the NDFD 
may also lead to significant variations in the nature 
of p(f,x) among geographic regions as well as from 
one forecast to the next.  We hope that transform-
ing f and x to percentiles will enable us to combine 
data from multiple sites and multiple dates as 
p(f,x) is modeled, ultimately improving the model. 

 
c. Diagnostic data 

 
To date, two statistics derived from the 

ENSMOS MaxT guidance have been considered 
as diagnostic data for NUANCE.  The first statistic 
is the standard deviation (SD) of the 11 MaxT 
forecasts contained in the ENSMOS guidance.  
This metric has been used successfully by NWS 
field forecasters to assess the quality of MOS 
guidance.  The second statistic was named the 
“ensemble deviation” (ED).  ED is computed by 
differencing each of the 10 perturbed forecasts 
with the control forecast, and computing the root 
mean square of these differences.  By differencing 
the perturbed members with the control rather 
than the ensemble mean, we hoped to emphasize 
the role of the control member.  This seemed de-
sirable since the ENSMOS development sample 
did not include any of the perturbed ensemble 
members, but only the control member.  

 
d. NUANCE development and implementation 

 
Figure 2 shows the NUANCE development 

process.  An archive of NDFD forecasts and their 
verifying observations are gathered and trans-
formed from their native values to climatological 
percentiles.  Related statistics from the associated 
ensemble forecasts are gathered as well.  To-
gether these data form a joint distribution model, 
p(f,x,d), which can be used to assess the uncer-
tainty of future NDFD forecasts.  It is not clear 
whether p(f,x,d) should be developed once with 
the largest practical development data set or re-
computed frequently using a smaller, “rolling” data 
set. 

Figure 3 shows the NUANCE implementation 
process.  The current NDFD forecasts are trans-
formed from their native values to percentiles.  

Figure 1:  Overview of the NUANCE process
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These forecasts and the current values of the as-
sociated diagnostic data are then used to infer the 
conditional distribution p(x | f,d) from the joint dis-
tribution model, p(x,f,d). 

 
3. RESULTS 
 

We developed a prototype of the NUANCE 
process by using NDFD forecasts of MaxT at vari-
ous forecast projection times.  A set of 168 
CONUS stations was selected that had long peri-
ods of record (~50 years) available in data sets 
provided by the U. S. Historical Climatology Net-
work (USHCN; Karl, et al. 1990).  Developmental 
data were taken from the period October 2004 to 
April 2005.  Efforts focused on developing tech-
niques that transformed MaxT forecasts and ob-
servations into climatological percentiles, qualita-
tively assessing the nature of the joint distribution, 
p(f,x,d), and evaluating SD and ED as diagnostic 
data. 

 
a. Transformation to percentiles 

 
A technique was developed to produce per-

centile values for any station, value of MaxT, and 
day of the year as well as the inverse operation.  
For each station at five-day intervals throughout 

the year, ordered 
observations of MaxT, taken 
from USHCN, were used to 
compute an “observed” 
percentile function (MaxT as a 
function of accumulated 
probability) for each five-day 
interval.   

Standard probability dis-
tributions were then used to 
model the distribution of MaxT 
for each station throughout 
the year.  A cosine series 
based on the day of the year 
was used to form the 
parameters for each probabil-
ity distribution.  The use of a 
cosine series guaranteed that 
the final technique would yield 
results that were annually pe-
riodic.  The magnitude and 
phase parameters of the 
cosine series were then 
adjusted fit the percentile 
function of this distribution to 
the observed percentile 
function derived from the 
USHCN data.  The fits for 
each station were subjectively 
assessed, and the number of 

terms in the cosine series was adjusted to achieve 
a best fit.  The quality of the fit was judged by us-
ing as few terms as possible, yet capturing the 
annual trends found in the observed distributions. 

Eight standard probability distributions were 
tested for this technique.  Table 2 provides the 
names of the distributions as well as a few subjec-
tive comments on their suitability.  (The Binormal 
Distribution is described by Toth and Szentimrey 
(1990).)  The distribution that fit the data best was 
the Generalized Lambda Distribution (GLD; Karian 
and Dudewicz 2000).  The GLD is a powerful 
probability distribution that can take on a variety of 
shapes.  This flexibility enables the GLD to model 
daily distributions of MaxT and MinT with suitable 
results.  Four parameters define the GLD.  The 
GLD is not well-behaved for all values of its four 
parameters, and this characteristic can lead to 
problems when fitting a GLD to observed data.  
Öztürk and Dale (1982) describe the use of GLD 
to model sunshine data.   

Figure 4 shows sample results for this per-
centile transform technique, using GLD.  The fig-
ure plots the five-day frequency data for the 5th, 
50th, and 95th percentiles at station BLH as well as 
curves produced by the technique.  The curves 
are able to capture a number of subtle features 
that can be seen in the plotted data. 

Figure 2:  NUANCE development process
 

Figure 3:  NUANCE implementation process
 



Table 2:  Probability distributions tested for 
modeling daily distributions of MaxT and 
MinT 

 

Distribution Variable Comment 

Normal MaxT Poor fit “in the tails”  

Normal ln (MaxT) Improved fit “in the 
tails” 

Binormal MaxT Skewness improved 
fit for some stations.  
Poor fit “in the tails.” 

Logistic MaxT Better fit than either 
version of Normal 

Laplace MaxT Worst fit 

Gumbel MaxT Skewness improved 
fit for some stations. 

Gumbel -(MaxT) Skewness improved 
fit for some stations. 

Generalized 
Lambda 

 Best overall fit 
 

 
Figure 5 compares the fitted curves from 

three CONUS stations that are located in drasti-
cally different climatological regimes.  For each 
station, nine curves are plotted, one each for the 
10th through 90th percentiles.  Blythe, California, 
(BLH) is located in California’s central valley, and 
it is subject to hot summertime temperatures.  
Baudette, Minnesota, (BDE) is located in the 
northern plains of the CONUS.  Fort Lauderdale, 
Florida, (FLL) is a southern coastal station. 

The percentile curves in Figure 5 clearly 
model a number of important characteristics of the 
climatology of MaxT at each station.  KBLH is hot; 
the 90th percentile for MaxT approaches 115° F 
during the summer.  During the winter and spring, 
MaxT shows increased variability.  This variability 
can be seen in the increased spread in the per-
centile curves during those seasons.  By contrast, 
KFLL shows relatively little seasonal variation.  
During July, the spread between the 10th and 90th 
percentiles is remarkably small.  KBDE is, by far, 
the coldest station of the three.  The 10th percen-
tile for MaxT drops below minus 5° F during Janu-
ary.  Note the large annual variation and the in-
creased spread between the 10th and 90th per-
centile lines during January. 

 

b. Modeling the joint distribution p(f,x,d) 
 
Computationally modeling the joint distribu-

tion p(f,x,d) can be done in very straightforward 
ways since the NUANCE prototype is imple-
mented for a small number of stations.  Each 
MaxT forecast, its verifying observation, and asso-
ciated ENSMOS metric is preserved within the 
application.  Other techniques that are less mem-
ory-intensive will likely be needed before NUANCE 
can be implemented for gridded NDFD forecasts. 

Scatter diagrams provide one tool for qualita-
tively assessing the nature of p(f,x,d).  Figure 6 
compares scatter diagrams for NDFD MaxT fore-
casts for the day 1 (24h) and day 7 (168h) time 
projections.  The scatter diagrams certainly show 
a difference in the characteristics of NDFD fore-
casts for these two time projections.  In each dia-
gram, the diagonal line that runs from the lower 
left to the upper right represents a perfect forecast.  
Data points that are coincident with or lie near that 
line verify best.  The data-sparse regions on either 
side of the diagonal are the result of the one-
degree (Fahrenheit) resolution of the forecast and 
observed data.  Visual inspection quickly suggests 
that day 1 forecasts verify better than day 7 fore-
casts, as one might expect.  The points on the day 
7 scatter diagram cluster around the 0.50 forecast 
value more than the points on the day 1 diagram.  
This behavior coincides well with the tendency of 
human forecasters and objective forecasting tech-
niques to be influenced by climatology more for 
later time projections.  The day 7 diagram also 
shows fewer extreme forecasts than the day 1 
diagram. 

 
c. Diagnostic Data 

 
We have already introduced the SD and ED of 

ENSMOS forecasts for MaxT as candidates for 
diagnostic data.  Figure 7 uses scatter diagrams to 
show the effects of stratifying day 7 MaxT NDFD 
forecasts by the ED.  The diagram on the left plots 
NDFD forecasts vs. observations for those cases 
where ED < 6° F.  The diagram on the right shows 
the cases where ED ≥ 6° F.  The union of all 
points plotted in the two diagrams in Figure 7 
yields the diagram on the right in Figure 6.  Com-
paring these three diagrams suggests that NDFD 
MaxT forecasts for day 7 are more skillful when 
ED < 6° F, but this relationship is not obvious.  

Figures 8 and 9 provide some insight into the 
value that SD and ED may provide as diagnostic 
data.  In all four graphs either SD or ED is used to 
stratify forecasts from the development sample.  
Intervals of SD/ED were established with a width 
of 0.1° F.  NDFD forecasts and their verifying  ob-
servations   were   assigned   to   these   intervals. 



  

 
Figure 4:  Results of percentile transform technique for Blythe, California.  Data points show 5th, 

50th, and 95th percentiles of climatological data.  Curves show the same percentiles, produced 
by technique. 

 

 
Figure 5:  Comparison of MaxT percentiles for Baudette, Minnesota (KBDE); Fort Lauderdale, Flor-

ida (KFLL); and Blythe, California (KBLH) 
 



Mean Absolute Error (MAE) was then computed 
for those intervals that contained more than 30 
forecasts.  The two graphs in Figure 8 plot MAE 
for each bin vs. ED for day 1 (left) and day 7 
(right).  The two graphs of Figure 9 show the same 
information, but substitute SD for ED. 

All four plots in Figures 8 and 9 associate lar-
ger MAE values with larger values of SD and ED.  
This relationship is stronger in data-rich regions at 
the center of each graph, and it is harder to iden-
tify where there are fewer cases.  As one might 
expect, the values of MAE, SD, and ED are larger 
on day 7 than on day 1. 

Of course, qualitative assessment of scatter 
diagrams is no substitute for a thorough statistical 
analysis of the data.  These graphical results, 
however, indicate the potential value of the NU-
ANCE technique. 

4. Future Plans 
 
Our next efforts will be focused on quantita-

tively assessing the information presented qualita-
tively here, assessing the behavior of MinT, work-
ing with grids, and producing experimental guid-
ance products.  Figures 8 and 9 suggest a rela-
tionship between NDFD errors and the ED and SD 
of ENSMOS forecasts.  This relationship seems to 
be different for a day 1 forecast than for a day 7 
forecast.  MinT data are readily available for the 
same stations.  Applying the techniques described 
here for MaxT to MinT should be straightforward.  
NDFD forecasts are grids, and, eventually, these 
NUANCE techniques will need to assess uncer-
tainty at every gridpoint.  This will require develop-
ing techniques that can assess the climatological 
distribution of weather elements at gridpoints. 

Figure 6:  Comparison of scatter diagrams of NDFD forecasts/verifying observations for day 1 
and day 7 

Figure 7:  Comparison of scatter diagrams of NDFD forecasts/verifying observations for day 1, 
stratified by the ensemble deviation (defined in text) value computed from ENSMOS guid-
ance 

 



A few efforts have been made to prototype 
products that take advantage of the conditional 
distribution p(x | f,d).  These have mostly taken the 
form of generating a 50% confidence interval 
around the NDFD MaxT forecast.  Other products 
have been considered, including a probability den-
sity function (PDF).  This PDF could be expressed 
as the boundary values for 10-percentile intervals.  
A PDF product could compliment the single-valued 
forecasts of the NDFD and offer NWS partners 
opportunities to develop additional products.  An-
other candidate product would estimate the prob-
ability the value of a weather element will exceed 
certain key values (32° F, 100° F, etc.). 

 
5. Conclusion 
 
 The NDFD is a resource of tremendous 
value.  One possible use of these data is to com-
pute uncertainty information that can augment the 

worth of the single-valued forecasts.  The NU-
ANCE technique may provide a number of tools 
that can derive additional value from the NDFD. 
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