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1. INTRODUCTION

This paper concerns precipitation retrieval algo-
rithms for a spaceborne or airborne dual-frequency
radar, in particular for the Dual-frequency Precipitation
Radar (DPR) onboard the Global Precipitation Meas-
urement (GPM) core satellite. From the dual-frequency
radar data we can in principle estimate two parameters
of the drop size distribution (DSD) at each range bin.
In practice, however, estimates from such algorithms
are not reliable in many cases unless we are given other
information such as the attenuation to the first gate or
to the farthest range gate that mitigates the effect of
uncertainties in radar calibration and attenuation due
to unobservable gases and particles, i.e., water vapor
and cloud water.

This paper first reviews the general principles of
dual-frequency algorithm and then examines some pos-
sible alternative algorithms that do not require addi-
tional information but can estimate reliable rain pa-
rameters by abandoning the possibility of estimating
two independent DSD parameters at each range bin.
Some possible methods are derived by assuming a cer-
tain plausible relationship between DSD parameters or
between some rain parameters.

2. DUAL-FREQUENCY ALGORITHMS

We assume that the beams of two channels are
matched and that the rain is uniform in the lateral di-
rections with respect to the range direction within the
beams. We also assume that multiple scattering effects
can be ignored, and that only the backscattering and
absorption of radar waves by individual particles need
to be considered. Then, the effective radar reflectiv-
ity factor Z., at wavelength X, which characterizes the
strength of backscattering from a unit scattering vol-
ume, can be expressed as the sum of backscattering
cross sections of individual particles in the unit volume.
We assume that the backscattering cross section oy
and the extinction cross section (or total radar cross
section) o, of each particle are determined only by its
diameter D as in the case of scattering and absorption
by a spherical particle. Under these assumptions, once
the particles’ phase state and temperature are given,
we can calculate gy, oy for any D by using Mie's for-
mula. The only remaining unknown factor that relates
the radar reflectivity factor Z.,, the specific attenuation
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kx, and the rainfall rate R is the drop size distribution
funtion N(D).

Once N(D) is estimated from Z.) and k, we can
calculate R. However, N(D) itself has an infinite degree
of freedom and cannot be determined uniquely only by
giving Z.» and ky. Our general strategy is that we first
choose a DSD model function N, (D) that is character-
ized by two parameters, 8, and 82. N,,(D;6;,62) should
represent the natural variations of N(D) at variety of
space and time reasonably well by adjusting 4, and 4,.
Since the dual-frequency radar echoes provide us with
two independent pieces of information at each range
bin, we would like to retrieve the two DSD model pa-
rameters (6, and 6,) there and calculate the rainfall rate
R from N, (D;61,62).

2.1 Differential Equations for the DSD Function with
Two Parameters

In our retrieval problem, we deal with a one-
dimensional problem. We want to estimate 6,(r) and
82(r) from measured radar reflectivities 7,,1(r) and
Zma(r), and then calculate R(r) from 81(r) and 62(r)
by using the model function N,,(D;8;,8,). Suppose
our model function N,,(D;61,62) approximates the true
DSD function closely so that we can express 7., and k
by using the backscattering cross section oy, and the
total cross section o, as the follows.

Zex(01,02) = CZX/UbX(D)Nm(D§€17€2)dD (1)
and
k)\(eheg) = Ck /Ut)\(D)Nm(D;eheg) dD (2)

Here, ¢z, is defined by czy = A*/(#%| K\ %) with K, =
(m2 —1)/(m3 + 2) where m, is the complex refractive
index of the particle for electromagnetic waves with
wavelength A. 7 is the ratio of the circumference to
the diameter of a circle. ¢ is a proportional constant
that changes with the unit of k. If the unit of £, is
neper per unit length, ¢, = 1. However, if for example,
the unit is dB per unit length, ¢, = 10log;, e.

Then, the two-way attenuation factor to range r
can be written as

Ak(r)zexp(—z/ b (s) ds). (3)
Ck Jo
and the measured apparent radar reflectivity factor
Zm 1s related to the effective radar reflectivity factor
through

Zma(r) = Ax(r) Zer(r). (4)



Let us define X,,» = In(Z,,») and X., = In(Z.,) for
brevity. We also choose the unit of k, as neper per
unit length so that ¢ = 1 to remove unnecessary con-
stant from equations. Taking the logarithm of (4) and
differentiate it with respect to r, we obtain

AXmx _ _op 4 dfﬂ. (5)

dr r

Or expressing it in terms of 4, and 4,, we obtain

deX
dr

0Xexn dfy  0X.y dfy (6)
a6, dr 99y dr’

= —2kx(01,02) +

If we have radar reflectivity measurements at two fre-
quency channels A = 1,2, then we have two equations
of the form (6), and we get a simultaneous pair of dif-
ferential equations for §; and 8.

df(r dXom1 (r
;( ) . Tl() + 2k (81(r), 82(r))
dhalr) | =4 | dXa(r) v
2 m
dr —0 T 2k2(01(r),02(r))
where
8X61 aXel
a0 a4
a_| @ ®)
aXeg aXeQ
99, 08y

Selecting a different set of DSD parameters 6} and 9},
will give exactly the same form of equations. In other
words, the selection of DSD parameters is not essential
in the formulation as long as the model function covers
the actual variations of DSD. It is the selection of the
model function, and not the selection of the parame-
ters, that determines the performance of the retrieval
algorithm. We therefore choose a set of parameters
that simplifies the appearance of equations.

The equations become singular at a point where the
determinant of A is 0: |A] = 0. Note that the change
of parameters does not remove this point.

Without loosing generality, therefore, we can choose
one of the parameters, which we denote by Ny here-
after, as a scale factor that is proportional to the total
number of particles or the magnitude of the distribu-
tion. If the DSD is graphically represented, Nj repre-
sents the vertical height of the distribution. The other
parameter we choose should represent the horizontal
spread of the distribution. We denote it by Dy. It
could be the mass-weighted diameter, or could be the
mass-weighted median diameter Dy. There is no es-
sential difference among them mathematically once the
model DSD function is selected.

For example, if we choose a I'-distribution model,
the DSD can be expressed as

Ny (D) = NoD" exp(—AD). 9)

Here u is called a shape parameter. A is related to
the mass-weighted median diameter Dy by A = (1 +

3.67)/Dg, or to the mass-weighted mean diameter D,,
by A = (u+4.0)/D,,.

In our treatment, however, Ny and D; are not as re-
strictive as they are in the above I'-distribution model.
As long as the model DSD function N,,(D) can be ex-
pressed in the form as

Np(D) = Nof(D: Dy). (10)

our formulation is valid. Here, f(D: Dg) is an arbitrary
function of D.

Since both Z.) and k, are proportional to Ny, we
can extract this proportional constant in Z., and ky by
defining I, and Iy as follows:

Zex = Nolyx(Dg) (11)
kx = cx Nodpx (Do) (12)

where

I (Do) & cZX/UM(D)f(D:DO)dD (13)

Ia (Do) d:ef/m(D)f(D:DO)dD (14)
We consider Ny and Dg are functions of range r.
Zma(r) =No(r)ex(Do(r))

x exp(—2 /0’ No(s)1in(Do(s)) ds) (15)

Taking the logarithms of (15) and differentiating it with
respect to r, we obtain

d _dln No  dIn(fpx(Do)) dDo(r)
g nZmar) == Do dr (16)
— 2exp(In No) I (Do(r)).

Now, suppose we have measurements of 7,,(r) at
two wavelengths, X, and X;. We use suffixes 1 and 2
for corresponding variables. Then, by combining (16)
for A\; and X, we obtain coupled differential equations
for Dy and Ng:

dDo(r) 1 [dln(Zml) dIn(Z2)
dr - b1 — bQ dr dr (17)

+ aNo{li1 (Do) — Itz(Do)}]

and
1dNo(r) 1 [b dn(Zp1) _, dIn(Zno)
No dr  by—b L dr Y (18)
+ aNo{bzfﬂ(Do) - b1ft2(D0)}]
where

d d
b1 = alﬂ([bl(Do)) and bQ = aln(IbQ(Do))
(19)



These coupled differential equations for Ny(r) and
Do(r) (lguchi and Meneghini, 1995) are the specific ex-
pression of the more general equations (7) when we
choose Ny and Dy as the two parameters 8, and 6,
respectively.

2.2 Differential Equations of Meneghini's Method

Define the path-integrated attenuation S,(r) to
range r by

Sy () d:efz/or No(s)In(Do(s)) ds (20)
Then,
L0 - B (Do)
— o I (Dolr) = Zek(r)ftbxwo(r()z)l)
where Ty (Do) is defined as
TIx (Do) & 12 (Do) (22)

Iin (Do)
Since X, is defined by X, im0,

Zox(r) = Zma(r) exp(Sa(r)) = exp(Xma(r) + Sa(r))

(23)
Substitution of this equation into (21) gives
ds
—2 = 2exp(Xoa + S3) i (Do(r) (24)
Since the ratio
Zel def ]bl(DO)
7o = = 1200 )

is a function of Dy only and independent of Ny, Dy can
be expressed as a function of Z.,/Z.,.

Do =H NZea1/Ze2) (26)
Substitution of (23) into this equation gives

Do = H™ (exp((Xpm1(r) + 51(r) = (Xm2(r) + S2(r))))
= J(Xm1(r) + 51(r) = Xpma(r) — 52(r))

(27)
where J(z) ¥ H=1(exp(z)). Substituting this Dy into
(24), we finally obtain a coupled pair of equations for
S, and Ss:

ds

e 2 exp( X1+ 51 ) o1 (J (X1 51— Xma—S2)) (28)

dsS;

o = 2exp(Xpmat52) L2 (J (X1 +51 — Xin2—52)) (29)

If you rewrite these equations by using Ny and Dg
as intermediate auxiliary variables, they become

dSl(T)

5 = 2No(r)1n(Do(r)) (30)
IR XTIt

No(r) = ]MZ(’"Tl(E(TT)))eXP(sl(T)) (32)
Do(r) = H (%) (33)
EEZEE:;; N Z;E:; exp(S1(r) = 52(r)) - (34)

If you convert the first two differential equations into
difference equations and solve them stepwise in back-
wards in range starting with a given pair of initial con-
ditions Si(ry) = S¢ and Sa(ry) = S, you will get
Meneghini's algorithm (Meneghini et al., 1992). In this
sense, Meneghini's algorithm is equivalent to a numer-
ical method to solve the coupled differential equations
(28) and (29) by a simple one-sided difference approx-
imation of differentials.

Note that the pair of differential equations of N
and Dy and those of S; and S, are mathematically
equivalent.

If we want to solve the equations in section 2.1
numerically, it is more stable to solve the equations
backwards in . Meneghini's equations share the same
property as these equations. They are generally stable
if they are solved backwards in r. Mardiana's iteration
method (Mardiana et al., 2004) is actually a method to
find the solutions that satisfy the initial conditions that
are given at the lower end (r = ;) of the interval [r),7,].
He gives (arbitrarily chosen) tentative initial conditions
at r = r, instead of r = r;, and solve the equation
backwards numerically. Then he calculates the differ-
ence between the solutions and the original conditions
given at r = r;. From this difference, he calculates
the correction factors to the initial conditions at » = r,
and repeats the calculation processes until the solutions
satisfy the original initial conditions. The original initial
conditions he uses are that the attenuations at r = r;
are zero at both frequency channels.

In short, the difference between Meneghini's
backward recursion method and Mardiana's iteration
method is whether the initial conditions are given at
r=r, orat r = r;. Both of them use one-sided differ-
ence approximation to calculate the differentials, which
is called Euler's method, to solve equations (28) and
(29). To solve these equations numerically for a given
set of data Z,(7;) (r; = 71, .., 7. A = 1,2), we can use
a different numerical technique such as Runge-Kutta
method that gives more accurate and stable solutions
than Euler's method (Press et al., 1992).



2.3 Adding Other Conditions

In actual situation, the radar signal suffers from at-
tenuation due to water vapor and clouds that are not
detectable by radar itself. If we want to retrieve the rain
profile below a bright band, for example, we need to es-
timate the attenuation due to the bright band as well.
Therefore, we cannot adopt the initial condition that
the attenuation is zero or a known amount at r = ;.
We need to treat it as an unknown parameter in the re-
trieval algorithm. When the surface reference technique
is applicable, the condition is given at » = r, and the
equation can be solved backwards in the raining inter-
val. However, if the surface reference is unavailable or
unreliable, we need to use a method that can estimate
the attenuation in other means.

To do that, we need to abandon the possibility of es-
timating two DSD parameters at each range bin (Iguchi
et al., 2001, Marzoug and Amayenc, 1994). There may
be many possible ways to do so, but here we discuss the
cases in which Ny and Dy are related in some ways. For
example, giving a condition that the normalized inter-
cept parameter N is constant in a two-parameter DSD
model is equivalent to giving a functional relationship
between Ny and Dy (See Appendix). The condition can
be generalized more. For example, the condition that
N{ is a linear function of range r could be used.

If Ny and Dg are related and N is expressed as a
function of Dy, then equation (16) has only one DSD
parameter Dy as the unknown variable, and we have
two simultaneous equations of the form

1 (00) P2 = (o) 4 (Do), -
gz(Do)dDdO( r) = f2(r) + ha(Dy).

If we eliminate dDg/dr from these equations, we obtain

92(Do)(f1(r) + h1(Do)) = g1(Do)(f2(r) + h2(Do)). (36)

This equation shows that Dy(r) can be obtained once
a No—D, relation is specified. A remarkable charac-
teristic of this equation is that the Dy profile can be
obtained from locally measured data without knowing
the attenuation to the first range gate, because (36)
is not a differential equation but an ordinary equa-
tion and because f,(r) includes only the derivative of
In Z,,(r) with respect to r which is independent of cal-
ibration. In practice, however, the measurement error
in Zma(r) and its fluctuations prevent us from solving
equation (36) with realistic values of Dy. However, if
Dy does not change very much over the path [rq, 5],
we can approximate IndZ,,,/dr by a finite difference
(In Zma(r1) = In Zpa(r2))/(r1 — r2). Then, the fluctua-
tions in fy(r) can be suppressed to a large extent and
we should be able to find a reasonable solution for D,.
Of course, other techniques to reduce fluctuating noise
such as regression and smoothing can be used in es-
timating the slopes. We call this method the dual-
frequency-with-a-single-parameter method or the DFS
method for short in this paper.

2.4 DAD Method

The method that uses the difference of attenuation
differences (DAD) between two frequencies over a cer-
tain range has been used as a standard dual frequency
rain retrieval method. This method usually is applied to
a system in which one radar frequency is relatively low
so that the attenuation at the higher frequency chan-
nel is the dominant part of the attenuation difference
between the two channels.

It is obvious from equations (11) and (23) that

In Z,A(r) =

In No(r) +1In I (Do(r)) — Sa(r). (37)

From this equation, we immediately obtain

[hl Zml(rl) bl lIl Zml(TQ)] bl [hl ZmQ(Tl) bl lIl ZmQ(TQ)]
. To1 (Do (1)) Tpa(Do(r2))
= (Do D))
= [S1(r1) = S1(r2)] + [S2(r1) — S2(r2)]-
(38)
Therefore, if
To1 (Do(ri))fe2(Do(ra)) _ 1 (39)

Tp1 (Do(r2)) le2(Do(71))

the lefthand side of equation (38) represents the differ-
ence of attenuation difference. If the specific attenua-
tions k; and k, are expressed in the unit of dB/km and
they are related to rainfall rate R through power laws,
kl = (llel and kz = (lQRbQ, then

[dBZml(Tl) bl dBZml(TQ)] bl [dBZmQ(Tl) bl dBng(TQ)]
= 2/ (ale1 — agsz) dr
SHb1 Sb2
~ 2(T2—T1)(G1R —(IQR )
(40)

where R is the average rainfall rate over the path. This
approximation is valid as long as its relative fluctuation
remains small and by is close to 1. If channel 1 is in the
Ka-band and channel 2 is in a lower frequency band,
k1 > ko2 and by ~ 1. Therefore, (40) can be approxi-
mated by

a1 — az)(r1 — ) B (41)
If we denote the lefthand side of (40) by DAD (differ-
ence of attenuation differences), we can calculate the
path-averaged rainfall rate from (41) as

7= (s o) " (42)

Since a5 < a1 and b, is not very different from by, the
relative error associated with the last approximation is
rather small.

It is often believed that this method is applicable
only when the Rayleigh approximation for scattering is
valid at both frequencies. However, this is not nec-
essarily so. The validity of this method is wider than




the Rayleigh scattering case. The condition (39) is of
course satisfied if scattering is the Rayleigh scattering
in which case, /,; = 5. However, the condition (39)
does not require the Rayleigh scattering. The condition
can be met if Do(r1) = Do(r2).

Even if this condition is not met, the ratio
Iy1( Do)/ Ie2( Do) does not change by more than a factor
of two in the usual rain rate in which the dual-frequency
method is applicable in a vertical observation with the
Ka- and Ku-band combination. Consequently, unless
the rainfall rate changes substantially between the two
ranges r; and r,, the deviations of this ratio from unity
at two range gates generally cancel to result in a value
close to unity. As a result, as long as we use a valid &-R
relationship, this method gives a rather robust estimate
of rainfall rate.

Note that this case can be obtained more generally
from equation (36). If g1(Do) = g2(Do) in (36), then
fi(r) = f2(r) = ha(Do) — h1(Dy)) or in terms of the
original variables

L (Zu (1)) = =l Zs(r)) =

dr dr
Ii2(Do(r)))

= 2No(Do(r)) (I (Do(r)) —
Integration of this equation from r; to ro will give equa-
tion (38) without the logarithmic term (In( )) on the
righthand side. The condition g1(Dg) = g2(Do) is equiv-
alent to (39), and is satisfied in the Rayleigh scattering
case because I = [j.

Note that specifying the k—R relationship for a given
DSD model function with two parameters is equivalent
to specifying the functional relationship between these
parameters. Therefore, under the assumption of using
a two-parameter DSD model, the formula (36) can be
regarded as a generalization of the DAD method.

(43)

2.5 Dual-Frequency Hitschfeld-Bordan Method

Assuming a relationship between Ny and Dg in a
two-parameter DSD model is equivalent to defining a
relationship between any two of DSD integral parame-
ters such as k,, Z., and R. Suppose that power laws
hold between k; and Z.; and between ky and Z.,.

by = onZP0, hy = ay 2% (44)
Assume further that A4,; and A, at r = 7, are not
known.
Zm =AnZ. )
1(Tb) b1 1(Tb) (45)
Zm2(s) = ApzZen(rs)

The Hitschfeld-Bordan solutions (Hitschfeld and Bor-
dan, 1954, Iguchi et al., 1994) for Z.,(r) in r, <7 < 7

become
Zm
Zer(r; Ap) = B ir )5
[Ap) — abron [ Z,4 (s) ds]H/ 6 (46)
46
i
Zea(r; Apy) = 2(r)

[AY3 — qBaon [ Z0%(s) ds]V/#2

where ¢ = 2/c;,. The rainfall rate estimated by the two
methods must be the same at all points, i.e., Ri(r) =
Ro(r) for all r. In practice, this condition cannot be
satisfied because of noise in Z,,,; and other error sources
such as the deviation of the assumed power-law k\—Z.»
relations from the true ky—Z., relationships. We try to
find the best combination of Ay, and Ay, by imposing
the condition that the difference between the rainfall
rates estimated from Z.; and Z., must be as small as
possible because they should represent the estimates of
the common quantity R. In practice, we adjust A, and
Ao in such a way that the solutions minimize

Ri(s; A1) — Ro(s; Ava)\°
/ ( 1(57 bl) 2(57 b2)) ds (47)
Ri(s; Ap) + Ro(s; Apz)
where R; and R, are calculated from the solutions 7.,
and Z.o. If power law relations hold between them, i.e.,

if R = alZeb{ and Ry = aQZebg, then R; and R, are given
by

Zy(r )
[Ab61 —gbion f,b 78 (s)ds
ZranQ(T)
[‘4522 — gbaorz f,rb Z;izz(s) ds]b2/ P2

Ri(r; Ap) = DE
(48)

RQ(T§ Ab2) = a3

Note that two conditions such as the equality of R;
and R, at two different ranges are enough to uniquely
determine A,; and A,,. Therefore, to remove the
overdeterminedness, we impose the minimization con-
dition on the integral expressed by (47).

An important advantage of this method lies in the
fact that it can estimate the attenuations A;; and As.
This means we can estimate rainfall profiles even when
there is significant unknown attenuation to the first
range gate, or when the radar calibration factor is not
well known. The method works without surface ref-
erence. A drawback is that the accuracy of the esti-
mates is limited by the closeness of the assumed one-
parameter DSD model to the true DSD.

It is worth noting here that we cannot estimate a
DSD parameter in addition to A,; and A, in this for-
mulation. For example, if all k-7, and Z.—R relations
are fixed after normalization by N, i.e., the coefficients
that appear in power laws among k/Ng, Z./Ng, and
R/N§ do not change when the actual DSD changes, ad-
Justment of Ng correspond to the adjustment of a; and
a; by factors ¢,, and ¢,, in such a way that a! = ¢,,;
and o) = ¢, 0 where ¢,, = 47 and ¢,, = ¢~ ”8’ Then
we can prove that the effect of ¢; and Ay cannot be
separated only by the conditions imposed. In other
words, we cannot introduce in equations (48) another
adjustable parameter ¢, that changes the k-7, relation-
ship and find the best set of (4,1, Awz,€0) by minimizing
the integral (47) because ¢ and A4, are practically de-
generated.
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FIG. 1. Comparison of the path-averaged rain rate
estimated from different methods. The abscissa
shows the data number along the path of the flight.
“DFRM (Att from SRT)” and "DFRM (Att from
DFHB)" denote the rain estimates from Menegh-
ini's dual-frequency method with the PIA from SRT
and from DFHB, respectively. “Zm-R(X)" and
“Zm-R(Ka)" are calculated by applying the Z.—R
power laws directly to measured 7, x and 7, .
without any attenuation correction. “Ze-X, HB”
denotes the Hitschfeld-Bordan method applied to
the X-band channel with 0.5 dB attenuation as-
sumed at the start of the processed interval.

3. EXAMPLES

To test how each algorithm mentioned in this pa-
per performs, we run these algorithm with an airborne
dual-frequency radar data set obtained during the CaPE
experiment. The combination of the frequencies is
10 GHz and 35.5 GHz. The aircraft was flying at
the altitude of about 11 km. The rain observed was
mostly stratiform with a clear bright band which ap-
peared about 4.2 km above the surface. The radar
echoes were sampled at every 30 m in range so that
the surface echo appears around the range gate num-
ber of 370. In the current test of the algorithms, the
data whose range bin numbers are between 250 and 350
were used. This range corresponds to a 3-km interval
that starts at about 0.7 km below the bright band and
ends at about 0.5 km above the surface. A gamma
DSD model with y = 3 is assumed in the algorithms.
In the DFS method, the assumption of a constant N¢
is used.

Figure 1 shows the path-averaged rain rate esti-
mated from different methods. Note that all dual-
frequency methods give approximately similar esti-
mates. The path-integrated attenuations (PlAs) esti-
mated by the surface reference technique (SRT) and
those by the DFHB method were used as the ini-
tial conditions in Meneghini's dual-frequency (DFRM)
method. As expected, if the PIA estimates from the

40
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FIG. 2. Comparison of the path-integrated atten-
uation (PIA) to surface estimated from different
methods. The dual-frequency Hitschfeld-Bordan
method gives the attenuations in the X and Ka
band channels at both top and bottom of the pro-
cessed interval. The PIA estimates from the sur-
face reference technique (SRT) include all atten-
uation from the radar to the surface, whereas the
PIA estimates from “DAD" does not include the
attenuation outside the processed interval of 3 km.

DFHB method are used, the rain estimates from DFRM
and DFHB methods are close to each other, expe-
cially when the attenuation is large. The rain esti-
mates from the X-band channel and Ka-band channel
by the DFHB method are virtually identical so that only
the estimates from the X-band channel are shown in
Fig. 1. This agreement is not surprising because the
closeness of the two estimates is the condition for the
solution. The DAD method and DFS method show
zigzag variations compared with the rest of the esti-
mates. These zigzag variations can probably be at-
tributed to the fact that these methods use only the
data at the end points. Note that the deviations of
the estimates by all dual-frequency methods from the
Zm(X)—R estimates change their sign around data num-
bers 10 and 43. These changes cannot be explained by
the attenuation correction alone, but by the changes
in DSD parameters that are not included in the Z.—R
relationship.

Figure 2 shows the corresponding path-integrated
attenuations estimated from DFHB, DAD and SRT
methods. Note that the paths over which the atten-
uations are estimated from these methods are not the
same. The SRT estimates include all attenuation from
the radar to the surface. The DFHB attenuation esti-
mates are calculated at the top and the bottom of the
processed interval which correspond to about 3.5 km
and 0.5 km above the sea surface, respectively. In spite
of a small difference in the evaluation positions, the at-
tenuation estimates at the bottom of the interval from
the DFHB method agree fairly well with the attenua-



tion estimates from the SRT. Apart from possible errors
in the SRT estimates, the discrepancies between the
DFHB and SRT attenuation estimates and the nega-
tive attenuation that appears in the X-band DFHB es-
timates can probably be attributed to the inappropriate
DSD model assumed in the DFHB algorithm.

DAD in Fig. 2 refers to the attenuation difference
between the two channels directly calculated from the
measured Z,, k, and Z,, x at the ends of the 3-km inter-
val that does not include the bright band. The DADs
calculated by using the attenuations from the DFHB
method agree fairly well with the directly calculated
DADs (not shown in the figure).

4. CONCLUSIONS

It is shown that if the attenuation to the farthest
point in the interval of rain retrieval is available, we
can use it as the initial condition to solve the differen-
tial equations for the two-parameter DSD model which
gives a fairly accurate estimate of rainfall rate. In this
case, we solve the equation backwards in range. If the
total attenuation is not significant, the attenuation can
be given at any point within the interval and we can
still solve the equations forward without introducing too
much error. In practice, however, there may be some
unknown attenuation or uncertainty in the measured
radar reflectivity factors. This paper proposes the dual-
frequency Hitschfeld-Bordan (DFHB) method as a way
to mitigate the difficulty. In this method we need to use
a single parameter DSD model so that the accuracy of
the retrieved rain rate may decrease if the actual DSD
deviates substantially from the model function. Never-
theless, this method is free from the calibration error or
unknown attenuation to the retrieving interval. This is
a great advantage especially over land where the surface
reference is not necessarily reliable. Compared with the
traditional DAD (difference of the attenuation differ-
ences) method which only give the path-averaged rain
rate, the DFHB method provides a rain profile that may
change with range.

We need more simulations and sensitivity tests to
find the applicable range of each method for variety
of rain intensities and to evaluate the potential errors
and biases. At the same time, we need to examine the
effects of the factors ignored in this paper: The most
important one may be the effect of inhomogeneity of
rain distribution within the radar’s instantaneous field
of view.
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APPENDIX
Constant N3 Implies Ny < D" in a Gamma DSD Model
Ng (Testud et al., 2001) is defined by

. 128 M5 128 M;

— oMy 10 Al
0 3 M} 3 D (A1)

where

M; = /D’N(D) dD, Dy, = —-. (A2)
M;

If we assume a gamma distribution, Dy = (u + 3.67)/A,
and

T4+ p+1)
M = No—rm— (43)
Therefore,
128 I'(4
N; = NoD¥ (445 (A1)

O3 (4 4+ u)* (3.67 4 p)r

If we can assume ; and N} are constant, then this
equation shows that Ny is proportional to Dj* and Ny
can be expressed as a power function of D).
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