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Abstract 
 

 This paper complements an earlier one, showing that the moment estimators frequently used to 
estimate parameters for drop-size-distribution (DSD) functions being “fitted” to observed raindrop size 
distributions are biased. The “fitted” functions often do not represent well either the raindrop samples or 
the underlying populations from which the samples were taken. Monte Carlo simulations of the process of 
sampling from known gamma DSDs (of which the exponential DSD treated in the earlier paper is a spe-
cial case), followed by application of a variety of moment estimators, demonstrate this bias. Skewness in 
the sampling distributions of the DSD moments is the root cause of this bias; this skewness decreases as 
the shape parameter of the population gamma DSD increases, but increases with the order of the mo-
ment. As a result, the bias is stronger when higher-order moments are used in the procedures. Correla-
tions of the sample moments with the size of the largest drop in a sample (Dmax) are weaker than for the 
case of sampling from an exponential DSD, and correlations of the estimated parameters with Dmax noted 
in that case are not present here.  However, spurious correlations between the estimated parameters re-
main. These things can lead to erroneous inferences about characteristics of the raindrop populations 
being sampled. The bias, and the correlations, diminish as the sample size increases, so that with large 
samples the moment estimators may become sufficiently accurate for many purposes.   

 
 

1. INTRODUCTION 
 

 Investigators frequently acquire observations 
of raindrop sizes and seek to describe the drop-
size distributions (DSDs) of the underlying popula-
tions from which the samples were taken by ana-
lytical expressions, the exponential or gamma 
function being most common. While moment 
methods to estimate parameters for the DSD func-
tions have become more or less traditional, 
Haddad et al. (1996, 1997) pointed out that such 
methods are biased. Statisticians (e.g. Robertson 
and Fryer, 1970) and hydrologists (e.g. Wallis et 
al. 1974) have long been aware of this bias, and 
Smith and Kliche (2005) provided examples of the 
bias for the case of sampling from an exponential 
raindrop DSD. Though the intuitive appeal of the 
moment approach seems almost irresistible, and 
the associated mathematical manipulations lend a 
convincing aura, the methods are indeed biased – 

in the statistical sense that the expected values of 
the “fitted” parameters differ from the parameters 
of the underlying raindrop populations. That can 
lead to erroneous inferences about the character-
istics of the DSDs being sampled. 
 
 The bias in the moment methods can be dem-
onstrated by testing their ability to recover pa-
rameters of known DSDs from which samples are 
taken. This must be done by computer simulation, 
as the DSDs in nature are inherently unknown. 
The case of sampling from exponential DSDs was 
treated in Smith and Kliche (2005), and the pre-
sent paper gives results for samples taken from 
hypothetical gamma DSDs and “fitted” with various 
moment-based procedures. The simulations use a 
Monte Carlo simulation procedure similar to that 
described in Smith and Kliche and outlined below.  
 
2. SIMULATION OF RAINDROP SAMPLING 
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simulating repetitive sampling from a specified 
population DSD, gamma in form for the present 
paper. A gamma DSD is usually expressed in the 
form 

  (1) ( ) ( )DDnDn λμ −= exp1

where n(D) is the number concentration of drops 
of diameter D, per unit size interval, and n1, μ and 
λ are concentration, distribution shape, and size 
(scale) parameters, respectively, of the DSD. It is 
customary to portray such DSDs on semilogarith-
mic scales, with log[n(D)] plotted against D. 
 
 For purposes of these simulations, (1) is 
more conveniently expressed in terms of the total 
drop number concentration NT and the mass-
weighted mean diameter Dm  [= (μ+4)/λ] as 
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Defining a dimensionless size variable y = D/Dm, 
this becomes 
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This can be recognized as the product of the 
mean number concentration NT and the gamma 
probability density function (PDF) of drop size. For 
convenience herein, we also designate the mean 
sample size (number of drops) as NT. This could 
be viewed as representing a volume sampling in-
strument with a sample volume of 1 m3 (independ-
ent of the drop size). However, a sample volume 
of α m3 and a mean drop concentration NT /α 
would lead to the same mean sample size and the 
same sampling statistics. Thus, with the drop sizes 
normalized to Dm, the results can be organized 
simply by the values of NT and the gamma shape 
parameter μ. 
 The simulations proceed from selected 
values of μ and NT by first drawing from a Poisson 
distribution with mean value NT to determine the 
actual total number of drops C in a given sample. 
Then C values of y drawn from the gamma PDF 
establish the (normalized) sizes of those drops. 
Normalized values for the six sample moments 
M1S through M6S are next calculated for each sam-
ple, and then various moment-based calculations 

(discussed in Sec. 4 and summarized in the Ap-
pendix) are applied to estimate the DSD parame-
ters. For purposes of this work, we classified the 
drop sizes into intervals of Δy = 0.02, representing 
the size classification procedure common to drop-
measuring instruments, and truncated the gamma 
PDF at y = 3.0. Repetition of the sampling and 
“fitting” process yields the desired distributions. 
We used about 1,000,000 drops (e.g. 50,000 sam-
ples with N  = 20 and 5,000 samples with NT T = 
200) in the simulations; as the probability of a drop 
in a gamma PDF with μ = 2 being larger than y = 
3.0 is 2.76 x 10-6 (and is even smaller for higher 
values of μ), we are lacking only a few larger 
drops from a full gamma DSD. 
 
3. CHARACTERISTICS OF SAMPLING 
 DISTRIBUTIONS 
 
 Before considering the moment-based “fits”, 
we first examine some characteristics of the distri-
butions of the sample moments 
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(i = 3  gives the sample moment related to liquid 
water concentration, or LWC; i = 6 gives radar re-
flectivity factor Z) themselves. Sampling from long-
tailed DSDs like the gamma exhibits certain gen-
eral features. Sample values of the moments are 
unbiased: the expected, or mean, value of MiS cor-
responds to that moment of the drop population 
being sampled. However, the sampling distribu-
tions are skewed, as indicated by the fractional 
standard deviations calculated by Gertzman and 
Atlas (1977) and as shown in Smith et al. (1993) 
or Smith and Kliche (2005). According to Gertz-
man and Atlas, the fractional standard deviation 
(FSD) σ /M  for sample values of DSD moment Mi i i 
as determined with a volume-sampling instrument 
studying a gamma DSD would be 
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where VS is the instrument sampling volume. The 
general form for the moments of a gamma DSD 
can be written 
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Fig. 2: Plot of median values of third sam-
ple moment M3S (proportional to LWC) and 
sixth moment M6S (proportional to Z) ver-
sus mean sample size; sample moments 
normalized with respect to the correspond-
ing population value. Horizontal dashed 
line indicates population value. Population 
DSDs: gamma, μ = 2.  
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VThe product NT S in the denominator of (6) is the 
mean sample size, which for a sample volume of 
1 m3 would be numerically equal to NT. Thus for 
i = 3 (LWC), μ = 2  and NT = 50, (6) gives (σ3/M3) = 
0.335. The distribution of a positive quantity (M3S) 
with an FSD this large is necessarily skewed. 
 
 Inspection of (6) shows that the skewness in-
creases with the order i of the moment Mi, and 
decreases with increasing sample size NT or with 
increasing values of μ. Figure 1 illustrates the first 
property for the sample moments M3S (LWC) and 
M  (Z), for the case μ = 2, N6S T = 50. The general 
tendency is for the sample moments to be lower 
than the corresponding population values; this be-
havior is the ultimate cause of the bias in the mo-
ment methods for estimating DSD parameters. As 
shown in Sec. 4, the increase of the skewness 
with the moment order leads to greater biases 
when higher moments are employed. Figure 2 il-
lustrates how the median sample moments ap-
proach the population values as the sample size 
increases. The skewness of the sampling distribu-
tions, and the resulting biases, decrease in a simi-
lar manner. 

 Sampling the small drops can be a major in-
strumental problem, and for gamma DSDs ade-
quately sampling the relatively rare large drops is 
also an important concern. Regardless of the 
(population) value of μ, fewer than one drop in 129 
in a gamma DSD is larger than D = 1.5 Dm, and 
fewer than one in 1900 is larger than D = 2 Dm. 
However, for μ = 2 the drops larger than 1.5 Dm 
contribute more than 10% of the LWC and almost 
half of the reflectivity factor. Consequently, the 
relatively large but relatively rare drops tend to be 
important in determining the moments of physical 
significance. The sample values of these moments 
are therefore correlated with the size of the largest 
drop in each sample (e.g., Fig. 3), though the cor-
relations are weaker than corresponding ones 
found with an exponential population DSD (Smith 
and Kliche 2005). Table 1 demonstrates that these 
correlations are stronger for higher-order mo-
ments, and remain appreciable even for fairly 
large sample sizes. The sample moments are in 
turn correlated with each other, an artifact of the 
sampling variability as discussed in Smith et al. 
(1993) or Smith and Kliche (2005). Figure 4 illus-
trates this spurious correlation between moments 
M

 
  

Fig. 1: Cumulative sampling distributions of 
third sample moment M3S (proportional to 
LWC) and sixth moment M6S (proportional 
to Z). Sample moments normalized with 
respect to the corresponding population 
value; vertical dashed line indicates popu-
lation value. Population DSD: gamma, μ = 
2. Mean sample size: 50 drops. 

4 (or R*, a surrogate for rainfall rate as sug-

 



 

gested by Joss and Gori 1978) and M6 (or radar 
reflectivity factor Z), for the case μ = 2, NT = 50. 
 
 The distribution of values along the abscissa 
in Fig. 3 here demonstrates that the maximum 
drop size in a gamma DSD is rarely approached 
(and this is true even in samples of hundreds of 
drops). There is clearly no basis for assuming 
truncation of the underlying DSD at the maximum 
observed drop diameter, with samples of such 
sizes. 

 

Table 1: Correlations between sample moments 
and maximum drop size in a sample. 

Population DSD: gamma, μ = 2 

 Sample Moment 
Mean sam-

ple size 
(NT) 

M2S M3S M4S M6S

10 0.772 0.906 0.950 0.982 
20 0.682 0.846 0.917 0.969 
50 0.559 0.760 0.866 0.949 

100 0.453 0.674 0.820 0.927 
200 0.381 0.596 0.753 0.902 
500 0.311 0.506 0.674 0.865 
1000 0.245 0.408 0.572 0.803 

 

Fig. 4: Scatter plot of sample values of 
normalized fourth moment (m4, proportional 
to R*) against normalized sixth moment 
(m6, proportional to Z). Solid line shows 
regression relationship; its slope corre-
sponds to an exponent 1.75 in the custom-
ary Z-R relationship. Population DSD: 
gamma, μ = 2. Mean sample size: 50 
drops. 

4. THE BIAS IN MOMENT ESTIMATORS 
Fig. 3. Scatter plot of sample values of normal-
ized third moment (m The essence of the moment approach for es-

timating parameters for DSD functions is to use 
the same number of moments calculated from ob-
served raindrop size distributions as there are pa-
rameters in the function to be “fitted.” Analytical 
expressions for the selected moments of that func-
tion are solved algebraically for the needed pa-
rameters, and observed values of the sample 
moments then entered into the resulting equations 
to estimate the parameters. The Appendix dis-
cusses the relevant mathematical expressions 
used here. The use of moment methods for rain 
DSDs evidently began with Waldvogel’s (1974) 
paper on the “N

3, proportional to LWC) 
against (normalized) maximum drop size in the 
sample. Horizontal dashed line indicates popu-
lation value of m3; dotted line shows regression 
relationship. Population DSD: gamma, μ = 2. 
Mean sample size: 50 drops. 

0 jump” of DSDs. He used ob-
served values of moments M  and M3S 6S (i.e. LWC 
and Z) to determine pairs of parameters for expo-
nential functions that purportedly represented the 
observed DSDs. However, most functions “fitted” 
in this way do not represent well either the sam-
ples upon which they are based or the underlying 
populations from which the samples were taken. 

 

 



 

4a. Moment Estimators for Gamma Functions  The figure includes two moment-method “fits” 
to the sample for gamma DSD functions. One of 
the two is based on moments M Figure 5, based on an “ideal sample” of 50 

drops from a gamma DSD with shape parameter μ 
= 2, illustrates the bias in the moment-method 
“fits.” This “ideal sample,” unlike the randomly-
drawn samples used elsewhere in this paper, was 
constructed from the cumulative PDF of drop size 
using the systematic procedure described below. It 
provides as close a representation of the PDF as 
could be achieved with a sample of 50 drops. 
Construction of the sample began with the “in-
verse cumulative PDF” NL(D), indicating the num-
ber of drops of diameter D or larger; closed-form 
expressions do not exist for cumulants of the 
gamma distribution, but good numerical approxi-
mations are available for integer values of μ. To 
illustrate the procedure, we note that 48.17/50 of 
the drops in the population have D/Dm ≥ 0.12, 
while (with the drop sizes quantized in intervals of 
ΔD/Dm = 0.02) only 47.33/50 have D/Dm ≥ 0.14. 
Thus we assigned D/Dm = 0.13 to one drop in the 
sample. Similarly, only 46.35/50 of the drops have 
D/Dm ≥ 0.16, so D/Dm = 0.15 was assigned the 
next drop in the sample; and so on. The stairstep 
plot in Fig. 5 represents the resulting sample. 

2, M3 and M4, as 
suggested in Smith (2003), and the other is based 
on M M3, 4 and M6, as used for example by Ulbrich 
(1983), Kozu and Nakamura (1991), or Tokay and 
Short (1996). The latter does not represent either 
the “observed” sample or the original population 
DSD very well; the smaller discrepancy resulting 
when the lower moments (M2, M3, and M4) are 
used in the calculation is evident. 
 
 The foregoing discussion and the specific ex-
ample in Fig. 5 suggest the general nature of the 
bias in moment estimators for parameters of 
gamma DSD functions: they tend to overestimate 
both the distribution shape parameter μ and the 
size (scale) parameter λ. In terms of the parame-
ters of (2), they tend to underestimate both Dm and 
NT – yielding “fits” having too few drops that are 
too small compared to the original raindrop popu-
lation. Figure 6 illustrates the bias in moment es-
timates of Dm, for random samples from a popula-
tion with μ = 2, NT = 50. The biases are greater 
when higher moments are used in the procedure; 
Fig. 7 illustrates this behavior for μ̂ . Consequent-
ly, procedures that use sample values of reflectiv-
ity in the moment calculations lead to greater bi-
ases than ones employing only lower moments. 
  

Fig. 5: Illustration of an “ideal sample” of 50 
drops from a gamma DSD (μ = 2) along 
with two moment-based gamma “fits” to the 
sample; plot uses “inverse cumulative” 
NL(D) format advocated in Smith (1982). 
Solid line represents the underlying drop 
population, while stairstep plot represents 
the “ideal sample” constructed as de-
scribed in text. Dashed and dash-dot lines 
represent “fits” based on moments M2, M3, 
M4 and M3, M4, M6 respectively. 

Fig. 6: Cumulative distribution of normal-
ized values of population mass-weighted 
mean diameter, as estimated from each 
sample using the indicated sets of sample 
moments; vertical dashed line indicates 
population value. Population DSD: gamma, 
μ = 2. Mean sample size: 50 drops. 

 



 

 
 Extension of this argument would appear to 

that using the lowest moments – M0S, the 
ample size, M , related to the mean drop diame-

NW 
ringi and Chandrasekar 2001), has come into 

suggest 
s 1S
ter, and M2S – would yield the smallest biases of 
all. In the case of exponential population DSDs 
discussed in Smith and Kliche (2005), inadequate 
instrument responses to very small drops mean 
that trying to use moments lower than M2S in the 
analysis would introduce another kind of uncer-
tainty into the moment procedures. However, in a 
gamma population with μ >1 or so there are fewer 
very small drops and their contribution to moments 
of order 1 or higher are less important. For exam-
ple, in a gamma distribution with μ = 2 about 27% 
of the drops are smaller than D/Dm = 0.3; those 
small drops contribute about 11% of the value of 
M1 but less than 4% of the value of M2. Depending 
upon the precision required, use of M1S with sam-
ples from gamma DSDs might be satisfactory. 
 
 Another formulation of the gamma DSD, in-
volving a normalized concentration parameter 
(B
use: 
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The moment estimators tend to overestimate the 
value of Nw, as illustrated in Fig. 8. 
 

The skewness in the sampling distribution for the 
moments diminishes as the sample size increases 
(e.g. Fig. 2), so the bias in the moment estimators 
should also decrease with increasing sample size. 
Figure 9 shows that to be the case; with samples 
of hundreds or thousands of drops the bias may 
become small enough to be negligible for many 
purposes. 
 
 
4b. Comparison with Maximum Likelihood 
 Estimators 
 
 The maximum likelihood (ML) estimators ad-
vocated by Haddad et al. (1996, 1997) should pro-
vide more accurate estimates of the gamma pa-
rameters, even though the ML estimators have 
some bias (Choi and Wette 1969). The ML esti-
mates for μ are obtained by solving 
 

Fig. 7: Cumulative distributions of values of 
gamma DSD shape parameter μ̂  (log scale), 
as estimated from the indicated sets of three 
sample moments; vertical dashed line indicates 
population value. Population DSD: gamma, μ = 
2. Mean sample size: 50 drops. 

Fig. 8: Cumulative distribution of values of 
normalized gamma DSD concentration pa-
rameter wN̂ , as estimated from the indicated 
sets of three sample moments. Abscissa indi-

es population 
value. Population DSD: gamma, μ = 2. Mean 
sample size: 50 drops. 
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where ψ is the “psi” or “digamma” function defined 
by ( ) ( )x/x ΓΓ′=ψ . This formulation does require 
good estimates of y , the ratio of M /M1S 0S, which 
can be difficult to obtain in practice. An iterative 
solution to (8) based on Bowman and Shenton 
(1988) has been used to compute some ML esti-
mates of μ for comparison with the moment esti-

ates. Figure 10 shows that the variance of the 
L estimates tends to be much smaller than that 

ula-
ean ML estimate of 

m
M
of the moment estimates in this idealized sim
tion. Moreover, the m μ̂ = 2.17 

 considerably closer to the population value (μ = is
2 than are the mean moment estimates () =μ̂   
3.79 for M2, M3, M4 and 3.34 for M0, M1, M2). The 
degree to which practical constraints in measuring 
y  accurately would degrade the ML estimates 

remains to be established. 
 Fig. 10: Cumulative distributions of values of 

gamma DSD shape parameter μ̂  (log scale), 
as estimated by maximum likelihood methods 
(MLE curve) or the indicated sets of three 
sample moments; vertical dashed line indicates 
population value. The M0, M1, M2 values are 
included for comparison with the ML estimates, 
since the latter make use of sample values of 
M0S (C) and M1S. Population DSD: gamma,  
μ = 2. Mean sample size: 50 drops. 

 
 
 
 
 

 
 
 
 
5. RELATED FINDINGS 
 
 Though the various sample moments are cor-
related with the maximum drop size in a sample 
(Sec. 3), and there are associated correlations 
between moments (e.g. Fig. 4), the correlation of 
the “fitted” parameters with the maximum drop 
size found when the population DSD is exponen-
tial in form (Smith and Kliche 2005) does not ap-
pear in the present simulations. For example, with 
an exponential population DSD the correlation be-
tween estimated size (slope) parameter 

Fig. 9: Variation of median value of gamma 
DSD shape parameter  μ̂ , as estimated 
from the indicated sets of three sample mo-
ments, with mean sample size. Population 
DSD: gamma, μ = 2. Horizontal dashed line 
indicates population value. 
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wN̂  and mD̂ . Such similar correlation between 
correlations (caused he  sampling re entirely by
variability) could be mistaken for physical relation-
ships. The correlations between estimated pa-
rameters are not much weaker when lower-order 
moments are used in the “fitting” process; with NT 
= 50, the log mw D̂N̂ −  correlation is -0.901 when 
sample moments M2S, M3S, and M4S are used 
compared to the -0.904 value with moments M3S, 
M4S, and M6S as illustrated in Fig. 11.  
 

 
 The log mw D̂N̂ −  relationship becomes more 
nearly linea e size increases, and the 
correlation coefficient remains stronger than -0.90 
(for moments M3S, M4S, M6S) when NT ≥ 50 – 
though the ranges of variation of the parameters 
decrease. In any case, this behavior suggests that 
one should be wary of inferring physical relation-
ships between such “fitted” parameters until the 
effects of the sampling variability have been taken 
into account. 
 
 

. IMPLICATIONS FOR ANALYSIS OF 

 parameter is unknown and may 
vary. 

• Observations with surface-sampling in-
struments, such as impact disdrometers, 
involve sample volumes that increase with 
the drop size – which tends to mitigate the 
skewness in the high-order sample mo-
ments, and consequently the associated 
biases. 

• The observations include only the actual 
sample size (C in these simulations). The 
mean, or expected, sample size (NT) is not 
known, though the actual sample size pro-
vides a better approximation as it in-
creases. 

• Very small drops are generally absent 
from many such observations − either be-
cause such small drops are not present, or 
because the instruments do not respond 
to those drops. In a gamma DSD with μ = 
2, 12% of the drops would be smaller than 
0.2 Dm and 58% would be smaller than 
0.5 Dm. With typical values of Dm being 1-3 
mm, this means the simulations may in-
volve more than perhaps twice the total 
numbers of drops that would be found in 
corresponding observations. Thus results 
given above for NT = 50 might be more 
applicable to observations with total drop 
counts of, say, 25. 

 
 These caveats notwithstanding, certain broad 
inferences are applicable: 
 

• Values of the parameters for DSD func-
tions as estimated by moment methods 
will be biased. 

• The bias will be stronger when higher 
moments are employed. 

• The bias will diminish as the sample size 
increases. 

6
 EXPERIMENTAL DATA 
 
 In trying to relate these simulations to actual 
raindrop observations, one should keep in mind 
several factors: 
 

• The actual population DSDs in nature are 
unknown. There is no assurance that they 
are gamma, and even if they are the 
shape

Fig. 11: Scatter plot of values of normalized 
gamma DSD concentration parameter NW (log 
scale) versus size parameter Dm, using esti-
mates based on sample moments M3, M4, and 
M6; sample values normalized to corresponding 
population values. Dotted line indicates regres-
sion relationship. Population DSD: gamma, μ = 
2. Mean sample size: 50 drops. 
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They may also run afoul of practical problems with 
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Appendi

 This appendix shows how the expressions 
used to calculate the normalized estimates of 
gamma DSD parameters summarized in this pa-
per are developed. To illustrate the moment-
method procedures as employed in these simula-
tions, consider the case of parameters NT, μ and 
Dm for a gamma DSD function to be estimated 
from sample moments M M  and M2S, 3S 4S. From (5),  

 ( )( ) ( )22
2 421 +++= μμμ /DNM mT
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Algebraic solution yields the relationships 

tify the shape-parameter estimates by sample 
, to look for a trend similar to that shown in 
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s are inherently biased. They tend to give 
us values of the DSD parameters unless 
p samples are much larger than those 
nly available. In particular, estimates of the 
 shape parameter μ tend to be far larger 
e shape parameter of the underlying DSD 
hich the samples are taken. The bias is 
st for small sample sizes, and also 
r when higher-orde

 
 Moment methods may provide estimates of 

SD parameters of sufficient D
la e s mples (hundreds, perhaps thousands) of 

s are available. Failing that, some alternative 
h to fitting the observed DSDs must be 
he maximum 

ted by Haddad et al. (1996, 1997) may be sat-
y, though the maximum l

 ar  not without bias (Choi and Wette 1969). 

 ( )( )αα 21324 −−
=

M
NT

 

2
2M α

( )
( )1

43
−
−

=
α

αμ  

 34 M/MDm =  

with 

 ( )42
2
3 MM/M=α  

 



 

The sample moments in these simulations are 

  i
miiS DmM =  

here 

(A-8) 

  

w

∑= i
i ym  (A-9) 

C

Substituting the sample moments into (A-4) 

through (A-7) yields the relationships 

 ( )( )αα
α̂mN̂

2

ˆˆmT 21324

2

−−
) =  (A-10

 
( )
( )1

43
−
−

=
α

αμ
ˆ

ˆˆ  (A-11) 

 34 m/DmD̂ mm =  

(A-13) 

rom (A-12), 

 

(A-12) 

with  ( )42
2
3 mm/mˆ =α  

F

34 m/mD/D̂ mm =  (A-14) 

In this fashion, parameter 
on the normalized sample moments mi can be 
compared to the population parameters in dimen-
ionless expressions where the a

(The gamma concen
ter n1 is an exception; moment estimates of that 

ty cannot be conveniently normalized.) Thus 
ly population parameters that enter the 

simulations are the DSD shape parameter μ and 
e mean sample size NT. Expressi

ther combinations of DSD parame
ple moments appear in the Appendix of Smith and 
Kliche (2005). 
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