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1. INTRODUCTION 

 
There have been increasing efforts to 

apply Bayesian statistics to climate change 
detection and attribution in order to consider 
errors in the signal (or model response) as 
well as natural climate variability (Min et al., 
2004, hereinafter referred to as M04, 2005a; 
Lee et al., 2005; Schnur and Hasselmann, 
2005; IDAG, 2005 and references therein). 
However, uncertainties from inter-model 
differences could not be assessed reasonably 
due to lack of enough samples of model 
simulations. 

In this study, we use multi-model 
ensembles archived for the 4th Assessment 
Report (AR4) of Intergovernmental Panel on 
Climate Change (IPCC) in order to test the 
sensitivity of Bayesian detection and 
attribution of climate change to inter-model 
uncertainties. The Bayesian decision method 
by M04 is applied to global and regional mean 
surface air temperatures (SATs) from single-
model ensembles (SMEs) with the ECHO-G 
model (Legutke and Voss, 1999; Min et al., 
2005b,c,d) and multi-model ensembles 
(MMEs) with IPCC AR4 models (Min and 
Hense, 2005a, hereinafter referred to as 
MH05a) and their results are compared. 

In total, six scenarios are considered as a 
possible explanation of observed SAT changes 
over the 20th century: CTL (control), N (natural 
forcing; solar and volcanic), G (greenhouse-
gas), S (sulfate aerosol), ANTHRO 
(anthropogenic forcing), and ALL (natural plus 
anthropogenic forcing). Given the scenarios, 
the Bayesian assessment is done for observed 
SATs for the whole 20th century and its first 
(1900-1949) and second half (1950-1999) 
separately. Parameters necessary to define 
the scenarios (means and covariance matrices, 
see section 2.1) are estimated from SMEs or 

MMEs and its effect on Bayesian decisions is 
examined as well as the effect of varying 
priors. 

 
2. METHODOLOGY 

 
2.1 Bayesian Decision Method 

 
Here we provide a brief explanation (see 

M04 for details). Given a set of N possible 
scenarios (mi, i = 1, …, N) and the 
observational data (d), an appropriate question 
on climate change detection and attribution will 
be “How probable is the scenario mi given the 
observation d?” This can be expressed as a 
conditional probability P(mi|d) which is the 
posterior probability of the scenario given the 
observation. Using Bayes’ rule, this can be 
evaluated from the prior probability P(mi) which 
represents a subjective belief in the scenario, 
and likelihood function l(d|mi) which 
characterizes the observational probability 
given the scenario: 
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Assuming multivariate Gaussian 

distributions for the detection variables of the 
scenario mi and the observations d, the 
likelihood function can be expressed as  
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where q is the dimension of the data vector d, 
Σ0 and Σi are the covariance matrices of the 
observation d and the scenario mi respectively. 
Ai is a linear combination of these covariance 
matrices, and Λi is a generalized distance 
measure between the observation and 
scenario (for more details see M04). 

According to the Bayesian decision theory, 
posterior probability in Eq. (1) can be used as 
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a decision function (Duda and Hart, 1973; 
Berger, 1985), and we select the scenario with 
maximum posterior so that the theoretical error 
becomes a minimum (Duda and Hart, 1973; 
M04). In the special case of identical priors, 
the likelihood ratio or Bayes factor, which 
represents observational evidences for the 
scenario concerned, becomes a decision 
function. Kass and Raftery (1995) suggested 
descriptive scales of Bayes factors. If the 
logarithm of Bayes factor is larger than 1, 2.5, 
or 5, the observations represent ‘substantial’, 
‘strong’, or ‘decisive’ evidences in favor of the 
scenario concerned against a reference 
scenario (CTL here). Most of recent Bayesian 
studies apply these scales to interpret their 
analysis results (M04; Min et al., 2005a; Lee et 
al., 2005; Schnur and Hasselmann, 2005). 
 
2.2 Legendre Series Expansions 

 
We treat one time series of SATs as the 

realization of a multivariate random variable. 
Therefore we need to reduce dimension to 
avoid singular or near-singular covariance 
matrices in Eq. (2). We propose the use of 
Legendre polynomials (LP) by which the time 
series of 20th century SAT anomalies are 
expanded. The amplitude of overall warming 
(scale, 0th degree: LP0), linear trend (trend, 
1st degree: LP1), and decadal time-scale 
variations can be represented effectively 
(MH05a). Figure 1 shows an example of 
Legendre decomposition of global mean SATs 
over 1900-1999 for Legendre degrees 0-12 
from CRU observations and two model 
simulations with natural and anthropogenic 
forcing (see section 3). 
 

 
 
FIG. 1. Reconstructed time series of global mean 
SATs for 1900-1999 from Legendre series 
expansions for degrees from 0 to 12: CRU 
observations (thick solid), selected two 20C3M 
simulations with different AOGCMs (thin solid and 
dashed), and 91 samples from ECHO-G_PD. After 
MH05a. 

 

Additional analysis of power spectra of 
global and regional mean SATs from MME 
control runs shows that models do well in 
simulating the internal variability on decadal 
time scales. Hence we can apply LP truncation 
up to the 12th degree which corresponds to 
about 20 year period for 1900-1999 and 10 
years for 1900-1949 and 1950-1999 (MH05a; 
Min and Hense, 2005b, hereinafter referred to 
as MH05b). 
 
3. DATA AND MODEL SIMULATIONS 

 
As the observational dataset we use 

Climate Research Unit (CRU) data 
(HadCRUT2v for global and CRUTEM2v for 
regional SATs) for 1900-1999 (Jones and 
Moberg, 2003). Regional domains are applied 
following Stott (2003). There are six 
continental scale regions (see caption of Fig. 
3) with each region composed of two or three 
subregions (Fig. 5). Combing Legendre 
coefficients of area-averaged SAT for the 
subregions constructs space-time vector for 
continental scale regions for model simulations 
and observations (MH05b). 

There are two sources for the model 
dataset. The first comes from SME simulations 
with ECHO-G. These consist of an existing 
1000-year present-day control run (ECHO-
G_PD; Min et al., 2005b,c) and newly 
performed historical simulations for 1860-2000 
under different external forcing factors 
consistent with the forced scenarios: G, S, N, 
ANTHRO, and ALL (For details about the 
simulations and applied forcing, see MH05a 
and Min et al., 2005d). From ECHO-G 
ensemble simulations, we obtain at least three 
non-overlapping samples of 100-year (1900-
1999) global/regional mean SATs for five 
forced scenarios. From the ECHO-G_PD, 91 
time series of 100-year SATs are sampled for 
the CTL scenario using a moving window of 
100-year length with a shift of 10 years. 

The second source for model data is the 
IPCC AR4 archive (http://www-pcmdi.llnl.gov 
/ipcc/about_ipcc.php). We extracted monthly 
mean SATs from 20C3M simulations and 
preindustrial control simulations from total 22 
models. Detailed model information can be 
found at the archive. Overall 48, 25, and 80 
non-overlapping 100-year global mean SATs 
could be extracted for MME_ALL (12 models 
with all forcing), MME_ANTH (12 models with 
anthropogenic forcing only), and MME_PI (22 
models with no forcing) respectively. Another 
sampling for MME_PI is done with overlapping 
100-year moving windows with a 10-year shift 
where data from individual models are kept 
separate. This produces 644 samples. 



For each 100-year long sample, Legendre 
coefficients are obtained for the whole period 
and the first and second 50 years which 
corresponds to observational periods of 1900-
1999, 1900-1949, and 1950-1999. Then the 
coefficients for three periods are used to 
estimate means and covariance matrices for 
likelihood calculation in Eq. (2). For the mean 
estimation, we use SMEs only for G, S, and N 
since we don’t have available MMEs for the 
scenarios while for the other scenarios SMEs 
or MMEs are selectively used. Covariance 
matrices from forced scenarios are assumed 
to be identical to that of CTL which is 
estimated from SMEs or MMEs. We refer to 
these two kinds of settings with SMEs and 
MMEs as SINGLE and MULTI experiment 
respectively. 

We treat all model simulations as 
independent samples. For every 100-year SAT 
sample the anomaly is calculated with respect 
to the first 20 years to be compared with the 
20th century simulations. Taking different 
reference periods for anomaly calculation does 
not change main results. All model data are 
interpolated linearly onto the observational grid 
of 5° × 5° and masked with observational 
coverage on a month-by-month basis prior to 
analysis. 

 

 
FIG. 2. Legendre expansion coefficients for global 
mean SATs for the period of 1900-1999, 1900-1949, 
and 1950-1999 from ECHO-G (thin) and CRU 
observations (thick). Gray shading represents the 
range from ECHO-G_PD. After MH05a. 

 
4. DETECTION VARIABLES 

 

Figure 2 shows the Legendre coefficients 
for global mean SATs from SMEs and 
observations. For the whole 20th century and 
its second half, model runs with greenhouse-
gas forcing show too large warming (see LP0 
and LP1 for scale and trend), those with 
natural forcing cannot simulate the warming 
reasonably. Model with all forcing exhibits a 
best consistency with observations, 
suggesting that observed global mean SAT 

changes are explainable with natural and 
anthropogenic forcing together. The observed 
and simulated coefficients in 1900-1949 
indicate an important role of natural forcing. 
Coefficients from MME_ALL and MME_PI 
show similar patterns (MH05a). 
 

 
FIG. 3. Legendre expansion coefficients for regional 
annual mean SATs for 1900-1999 over 16 
subregions from six continental scale regions: North 
America (NAM), Asia (ASI), South America (SAM), 
Africa (AFR), Australia (AUS), and Europe (EUR). 
Thick lines are CRU observations and light [dark] 
grey lines represent results from SMEs [MMEs]. 
After MH05b. 

 
Figure 3 displays the Legendre 

coefficients of SATs for 16 subregions during 
1900-1999. In general we can find the 
observed warming in most subregions, 
although the warming amplitude varies from 
region to region relative to the internal 
variability range. Model simulations with 
different forcing factors show that the 
coefficients from ALL and ANTHRO runs are 
closer to observational values than the other 
runs. In some regions, positive coefficients of 
LP4 are dominant in N and ALL runs, which 
are also found in the observations. This 
represents a possible role of natural forcing 
since LP4 contains the early warming near 
1940s (Fig. 1). 
 

5. BAYESIAN DECISION RESULTS 

 
5.1 Global Mean Temperatures 

 



Distribution of posterior probabilities and 
Bayesian decision for global mean SATs from 
the MULTI experiment is shown in Fig. 4. ALL 
scenario is decided for 1900-1999 and 1950-
1999 whereas SAT change for 1900-1949 is 
classified into N or ALL scenarios. This is well 
consistent with previous results (Mitchell et al., 
2001; IDAG, 2005 and references therein). 
Figure 4 also shows that the Bayesian 
decisions are mostly insensitive to inter-model 
variability and prior probability. The results 
from SINGLE are very similar, meaning that 
introducing larger inter-model uncertainty does 
not change the Bayesian assessment for 
global mean SATs (MH05a). 

 

 
FIG. 4. Distributions of posterior probabilities for the 
four scenarios of CTL, G, N, and ALL (upper four 
panels) and corresponding Bayesian decisions 
(bottom panels) for observed global mean SATs for 
1900-1999, 1900-1949, and 1950-1999 in case of 
varying prior probabilities from the MULTI 
experiment. Ordinate depicts the prior probability of 
CTL and abscissa represents Legendre degrees 
retained at 0 to 12. After MH05a. 

 
5.2 Regional Mean Temperatures 
 

Figure 5 represents the decision results 
for six continental scale regions from MULTI. 
Comparing with the global mean results, we 
consider here two additional scenarios of S 
and ANTHRO, and analyze space-time vectors 
by combining the Legendre coefficients for two 
or three subregions. Decision results for 1900-
1999 (Fig. 5a) show that NAM, SAM, AFR, and 
EUR have dominant ALL signals (green) while 
ASI and AUS prefer ANTHRO scenario (blue). 
In 1900-1949, the N signal over SAM and ALL 
signal over AFR are dominant (Fig. 5b) unlike 
global mean result (Fig. 4). Result for 1950-
1999 resembles that for 1900-1999 except that 
AFR is dominated by G signal, which indicates 
an underestimated warming trend simulated 
by MMEs.  

Generally regional-scale decisions are 
insensitive to the priors and temporal 
truncations. In comparison with the results 

from SINGLE, some different decisions can be 
found, e.g., AHTHRO signal is stronger over 
AFR for all three periods and over SAM in 
1950-1999. According to patterns of the Bayes 
factors (not shown), the strength of ALL and 
ANTHRO signals over those regions are very 
similar (MH05b). Hence the effect of inter-
model uncertainties appears to be weak even 
for regional-scale climate change assessment. 

 

 
FIG. 5. Bayesian decisions for regional mean 
SATAs for a) 1900-1999, b) 1900-1949, and c) 
1950-1999 in case of varying priors and Legendre 
degrees retained at 0 to 4 from the MULTI 
experiment. After MH05b. 

 
6. CONCLUSION 

 
A Bayesian approach is applied to the 

observed global and regional SAT changes 
using MMEs of the IPCC AR4 simulations and 
SMEs with the ECHO-G model. A Bayesian 
decision method is used as a tool for 
classifying observations into six scenarios 
(CTL, N, G, S, ANTHRO, and ALL) which are 
used to explain observed SAT changes. 
Observed and simulated area mean SATs are 
decomposed into temporal components of 
overall mean, linear trend, and decadal 
variabilities through Legendre series 
expansions. The coefficients are used as 
detection variables. Parameters (means and 



covariance matrices for likelihood calculation) 
for defining each scenario are estimated from 
SMEs or MMEs, by which sensitivity of 
Bayesian decision results to inter-model 
uncertainties is examined. 

Main finding is that Bayesian assessment 
of climate change for global and regional SAT 
changes provides observational evidences for 
natural plus anthropogenic signals (i.e. ALL 
scenario), corroborating previous results 
(Mitchell et al., 2001; IDAG, 2005). The results 
are largely insensitive to inter-model 
uncertainties and prior probability in the global 
and regional mean SATs. 
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