

Fall precipitation

white areas - Cvap<Ctem

Moistening pattern

Cooling pattern
Moistening-cooling pattern
dark colors - 95\% significance

Transition between the contributions for winter and summer precipitations.

Transition between the contributions for winter and summer precipitations.

Annual precipitation

white areas - Cvap<Ctem

Moistening pattern

Cooling pattern
Moistening-cooling pattern
dark colors - 95\% significance

Transition between the contributions for winter and summer precipitations.

There are places where the same contribution pattern controls the entire atmospheric column below 350 hPa .

Contributions of water vapor and temperature of a layer/column

Moistening pattern
Cooling pattern
Moistening-cooling pattern

Summary

$>$ By using relative humidity to reflect the interannual variability of precipitation, the contributions of water vapor and temperature to the interannual variability are evaluated.
> To have more precipitation in winter, water vapor is important in highlatitudes, temperature is important in mid-latitudes, and both are important in low-latitudes.
> For summer precipitation, cooling pattern is mainly in mid-high latitudes, moistening pattern is mainly in low-latitudes, and moisteningcooling pattern can be in all latitudes.
$>$ The distributions of the contribution patterns for precipitations in spring, fall, and the whole year all show a transition between the contributions for winter and summer precipitations.
$>$ Role of atmospheric circulation (warm/moist \& cold/dry airflows) e.g., in winter mid-latitudes, when there is cold/dry air coming from the north, the cooling effect is more significant than its drying effect.

