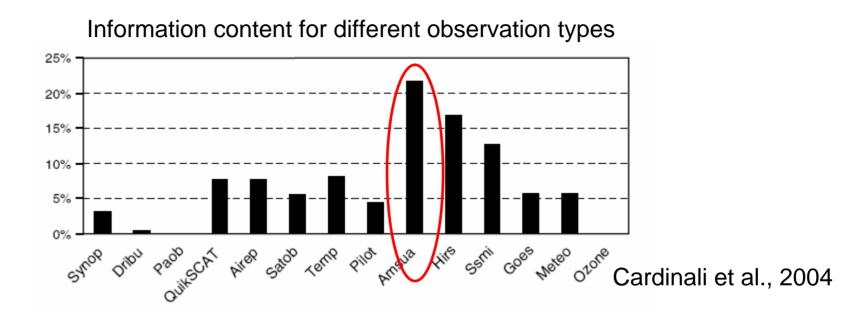
Analysis observation sensitivity calculation within an EnKF

Junjie Liu and Eugenia Kalnay


University of Maryland 88th AMS annual meeting The analysis state linearly combines background and observations based on weighting matrix K:

$$\mathbf{x}_{a} = \mathbf{x}_{b} + \mathbf{K}(\mathbf{y}_{0} - h(\mathbf{x}_{b})) \qquad \mathbf{H}\mathbf{x}_{a} = \mathbf{H}\mathbf{x}_{b} + \mathbf{H}\mathbf{K}(\mathbf{y}_{0} - h(\mathbf{x}_{b}))$$

Influence matrix:
$$\mathbf{S} = \frac{\partial \mathbf{H}\mathbf{x}_{a}}{\partial \mathbf{y}} = \mathbf{K}^{T}\mathbf{H}^{T} = \mathbf{R}^{-1}\mathbf{H}\mathbf{P}^{a}\mathbf{H}^{T}$$

Analysis observation sensitivity: diagonal values of the influence matrix (Cardinali et al., 2004)

- Indicates how sensitive the analysis is to the observations
- between 0 and 1 (Cardinali et al., 2004)

Calculation of analysis sensitivity within 4D-Var

Approximate method based on truncated eigenvalue decomposition

The trace of analysis sensitivity (information content) qualitatively reflects the importance of different type observations.

o The truncated eigenvalue decomposition introduces analysis observation sensitivity value larger than one.

Objective and outline

> Objective

- Propose a method to calculate analysis sensitivity within the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007)
- Study the relationship between information content and the actual observation impact calculated from data denial and data addition experiments.

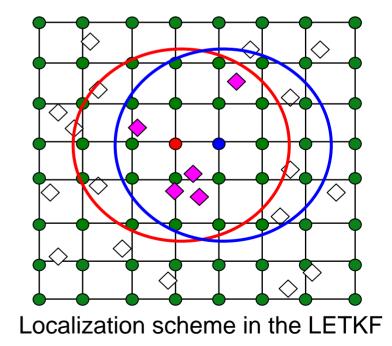
Outline

- Calculation method and verification in Lorenz-40 variable model
- Experiments with a primitive equation model
- Summary

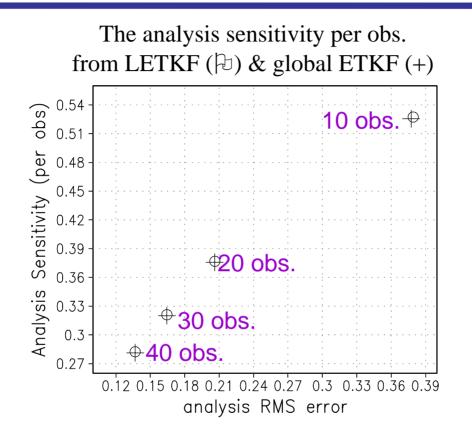
Calculation of analysis sensitivity within the LETKF

Reminder: analysis sensitivity is the diagonal value of the influence matrix:

$$\mathbf{S} = \frac{\partial \mathbf{H} \mathbf{x}_a}{\partial \mathbf{y}} = \mathbf{K}^T \mathbf{H}^T = \mathbf{R}^{-1} \mathbf{H} \mathbf{P}^a \mathbf{H}^T$$

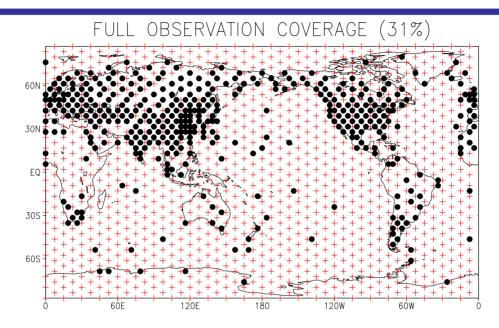

> In 4D-Var (Cardinali et al., 2004), it requires an approximation to get \mathbf{P}^a

• $\mathbf{P}^{a}\mathbf{H}^{T}\mathbf{R}^{-1}$ is directly calculated in any EnKF.


In the LETKF, each observation is used more than once in different local patches

? The analysis sensitivity is different with respect to the same observation in different local patches.

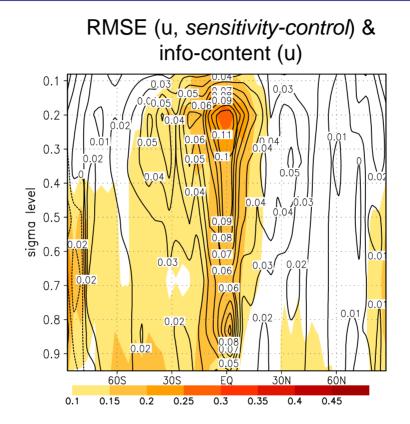
 \Rightarrow We average the analysis sensitivity over the different local patches.


Verification of analysis sensitivity calculation method within the LETKF with Lorenz-40 variable model

LETKF gives same results as global ETKF without averaging

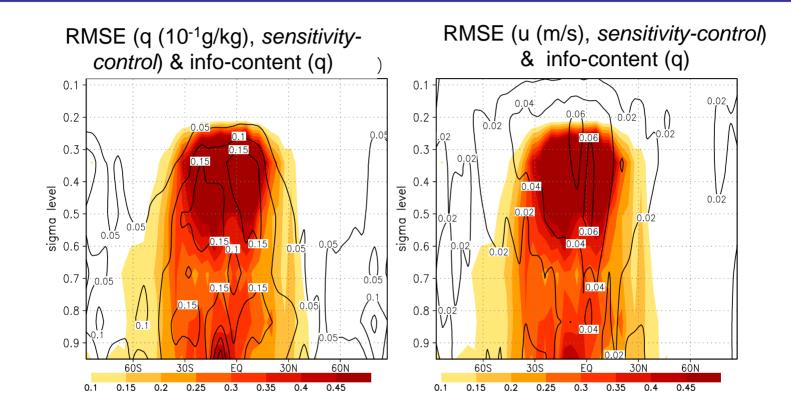
➤ It decreases with the increasing of observation coverage, increases with the magnitude of the analysis error.

Simulated data denial experiments with SPEEDY

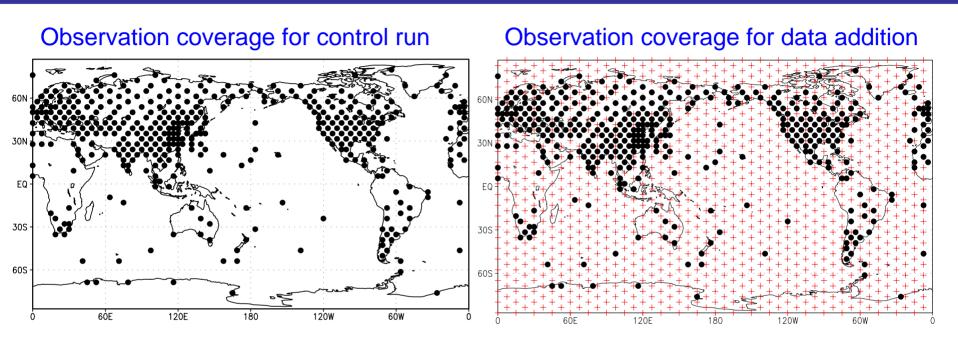

SPEEDY (Molteni, 2003): 96 by 48 grid points horizontally, and 7 vertical levels **Data denial experiments:**

Control run: full coverage for all dynamical variables (u, v, T, q, Ps).

Sensitivity experiments: u/q is not observed in locations with red +


• Compare information content (the trace of analysis sensitivity) of zonal wind/specific humidity at locations with red + from control run to the RMS error difference between sensitivity experiment and *control experiment*.

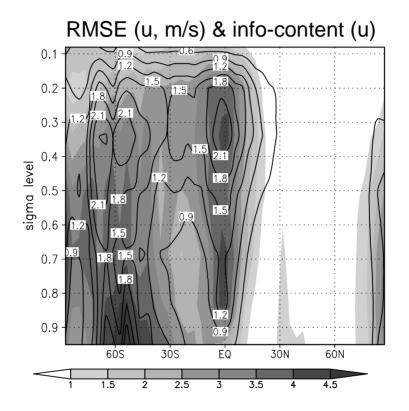
Information content (control, shaded) vs. the difference of RMSE ((data denial)-control, contour)


Information content qualitatively reflects the actual observation impact from datadenial experiments.

Information content (control, shaded) vs. the difference of RMSE ((data denial)-control, contour)

Information content not only qualitatively reflects the observation impact on the same type dynamical variable, but also on different type of dynamical variables

Simulated data addition experiments with SPEEDY


Data addition experiments:

Control run: assimilates observations in the closed circles (left panel).

Sensitivity experiment: u at the red plus signs are added into the observation data set

• Compare information content of u wind at locations with red + calculated along with control run to the RMS error difference between sensitivity experiment and control experiment.

Information content (control, shaded) vs. RMSE difference (control-(data addition), contour)

- Information content also qualitatively reflects the actual observation impact from data addition experiments.
- It could be used to design observation network.

Summary

- The calculation of analysis sensitivity needs no approximation and can be calculated along with the data assimilation in the LETKF.
- The trace of analysis sensitivity qualitatively reflects the actual observation impact from much more expensive data-denial and data addition experiments
- Information content not only qualitatively reflects the observation impact on the same type dynamical variable, but also on different type of dynamical variables
- The information content cannot quantitatively reflect the observation impact, and cannot detect observations with poor quality.
- This is done in our observation impact study (like Langland and Baker, 2004) method but without adjoint model. (See presentation 6.3)