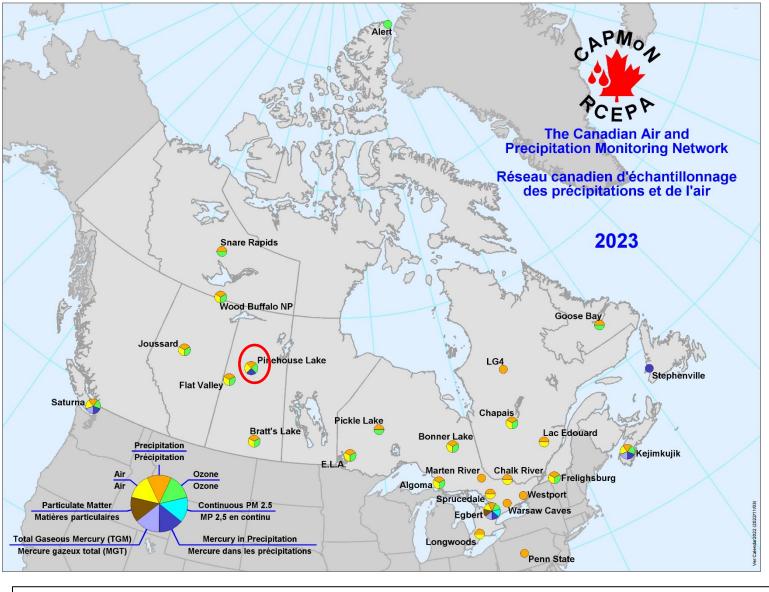
Contribution of emissions from the oil sands activities in Alberta, Canada to atmospheric concentration and deposition of nitrogen and sulfur species at a downwind site

Yuan You, Jason O'Brien, Amanda S. Cole, Leiming Zhang, Zhuanshi He, Jian Feng, and Samuel Pearson

> Air Quality Research Division Environment and Climate Change Canada

AMS 26th Conference on Atmospheric Chemistry Session 4C January 29, 2024


ACKNOWLEDGEMENTS

- Canadian Air and Precipitation Monitoring Network (CAPMoN), ECCC
- The financial support of the Oil Sands Monitoring Program on the continuous measurements.

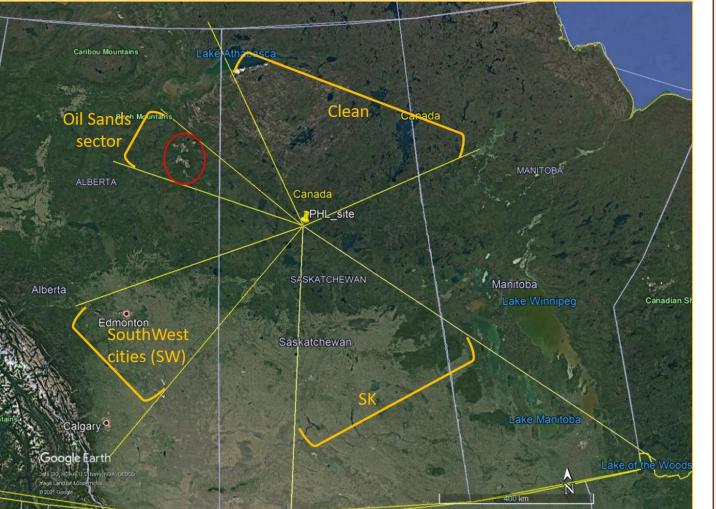
INTRODUCTION

- Atmospheric sulfate (SO₄²⁻) and most nitrogen (N) compounds from anthropogenic NO_x and SO₂ emissions are acidifying pollutants, the deposition of which can harm sensitive ecosystem.
- Deposition of N compounds to ecosystem can also lead to eutrophication and threaten biodiversity.
- □ The facilities and operations in the Athabasca oil sands region (AOSR) are large sources of NO_x and SO₂ emissions. Most previous studies on N and S depositions focused on regions within 50 km from the center of the oil sands facilities. A few studies covered distances up to 135 km.
- □ Lack of studies downwind (350 km) at sensitive ecosystems.

[Blake & Goulding (2002); MacKenzie & Dietrich (2020); Behera et al. (2013); Zhang et al. (2018); McLinden et al. (2020); Fenn et al. (2015); 3 Hsu et al. (2016); Watmough et al. (2014); Makar et al. (2018)]

Canadian Air and Precipitation Monitoring Network (CAPMoN)

Results at Pinehouse Lake site (2015-2019), located in the boreal forests of Saskatchewan.


Region of water bodies in northern Saskatchewan has been considered as acid-sensitive.

□ This study investigated the atmospheric concentration and deposition of N and S species about 350 km downwind of the Athabasca oil sands facilities to understand the long-range impact of NO_x and SO_2 emissions.

- CAPMoN air filter pack concentration (daily): HNO₃, SO₂, pSO₄²⁻, pNO₃⁻, pNH₄⁺, Na⁺, Mg²⁺, Ca²⁺, K⁺, and Cl⁻
- CAPMoN precipitation depth and concentration (daily): SO₄²⁻, NO₃⁻, NH₄⁺, Na⁺, Mg²⁺, Ca²⁺, K⁺, Cl⁻, and pH
- Ambient continuous concentration (5-min average): NO_y, NO, NO₂, NH₃, and SO₂

[Jeffries et al. (2010); Cathcart et al. (2016)]

METHODOLOGY - TRAJECTORY SECTOR ANALYSIS

HYSPLIT air mass back trajectories (3day backward):

- For dry deposition: Trajectories start at ¹/₂ boundary layer height, starting at every hour every day
- For wet deposition: Trajectories start at 1 km above ground level, starting at every three hours (0, 3, 6,..., 21 h UTC) for days with precipitation
- "Clean" sector was included to estimate the anthropogenic (%) when calculating oil sands emission contribution from the Oil Sands (OS) sector.
- SW and SK sectors were included for sectoral contributions to compare to the OS sector.
- Sector assignment of sampling days
- 39 days were analyzed separately as the Fire influenced days, to minimize the influence of wildfire emissions.

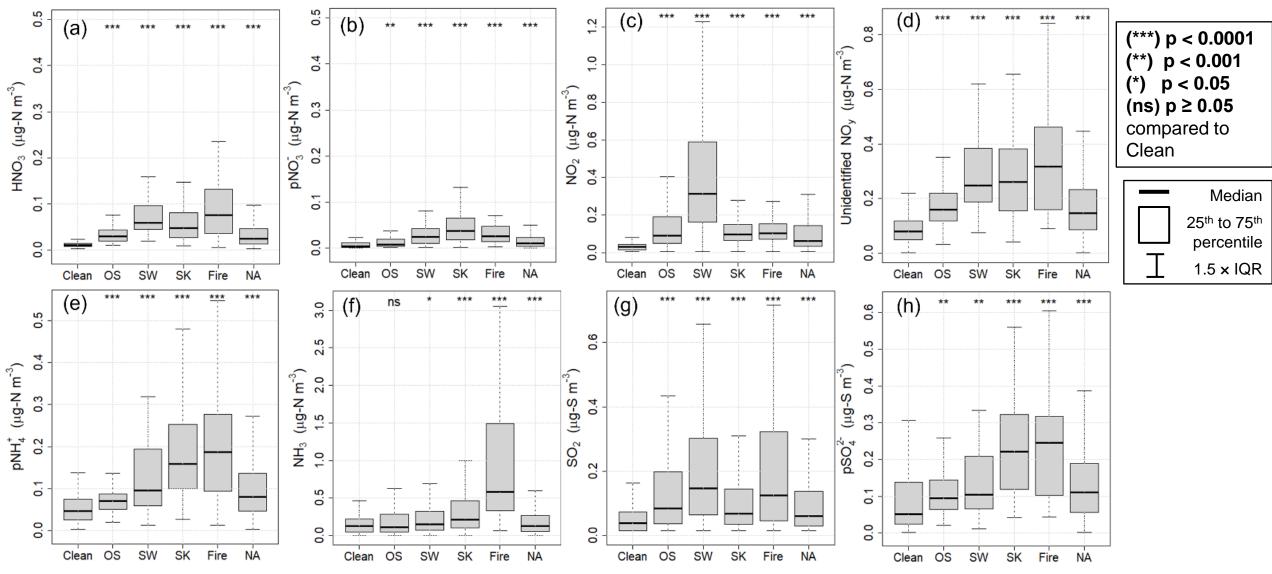
[Google Earth Pro. 2021-09-10; HYSPLIT - Stein et al. (2015)]

METHODOLOGY – DEPOSITION CALCULATION

- Concentration of unidentified $NO_y = NO_y HNO_3 pNO_3^2 NO_2 NO_3$
- Dry deposition: the inferential method:

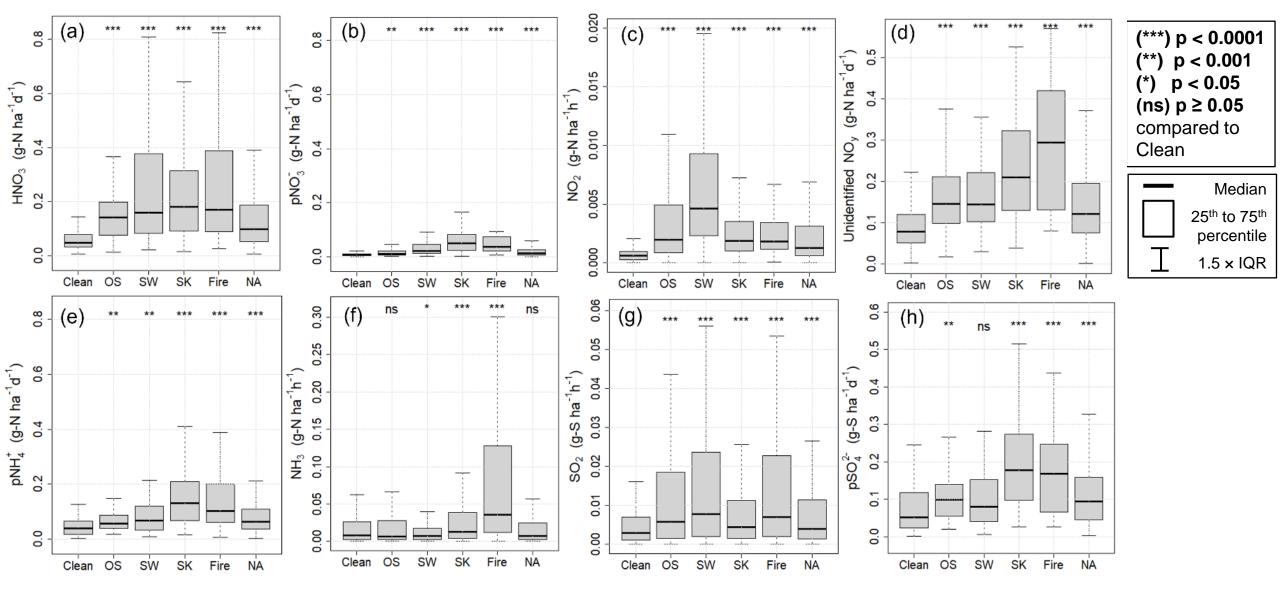
 $F_{dry} = V_d \times C_{air}$

 V_d is dry deposition velocity calculated for

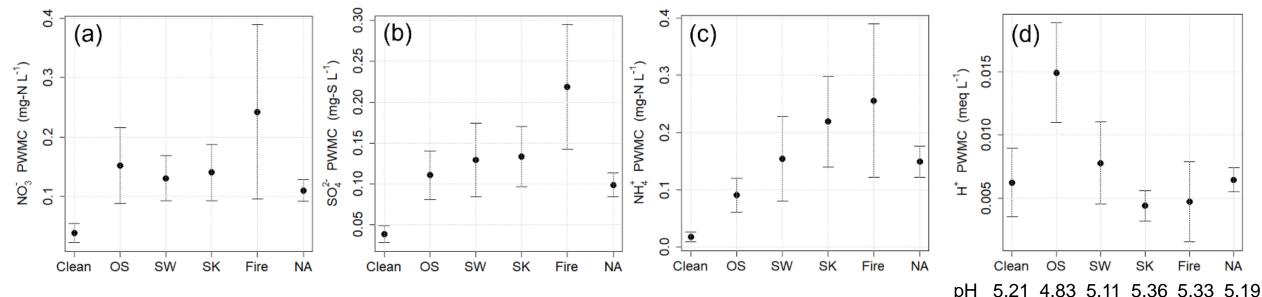

- \circ Gases: HNO₃, NO₂, NH₃, SO₂
- V_d (unidentified NO_y) = 0.05 × V_d (HNO₃) + 0.3 × V_d (pNO₃⁻) + 0.65 × V_d (PAN)
- $\circ~$ Fine and coarse particles for pNO_3⁻, pSO_4²⁻, pNH_4⁺, base cations and Cl⁻
- Wet deposition (daily)

 $F_{wet} = concentration (daily) \times precipitation depth (daily)$ NO₃⁻, SO₄²⁻, NH₄⁺, base cations and Cl⁻

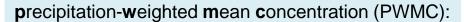
[Zhang, L., Brook, J. R., & Vet, R. (2003). ACP, 3(6), 2067–2082; Zhang, L., Vet, R., O'Brien, J. M., Mihele, C., Liang, L., and Wiebe, A. (2009), JGR, D02301; Zhang, L., & He, Z. (2014). ACP, 14(7), 3729–3737.]


[Zhang et al. (2003)] [Zhang et al. (2009)] [Zhang and He (2014)]

RESULTS - AIR CONCENTRATION


- Statistically significant differences between the OS and the Clean sector were observed for all the species, except for NH₃.
- NH₃ concentration on fire-influenced days were significantly higher. SK sector was the second highest sector.
- Results suggest that a significant portion of emitted SO₂ was transported downwind before being oxidized to pSO₄²⁻.

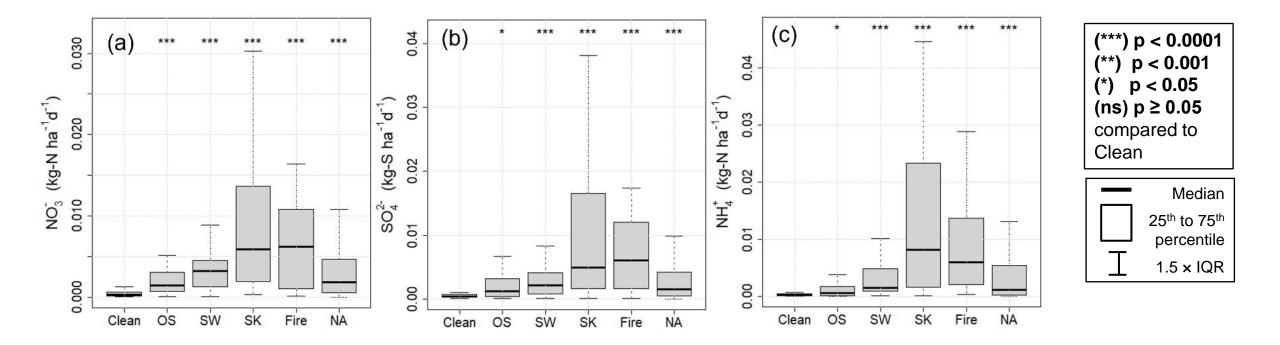
RESULTS - DRY DEPOSITION



- Results of dry deposition fluxes from different sectors are very similar to the concentration results.
- Important contributions from SW and SK sectors.

RESULTS – PRECIPITATION-WEIGHTED MEAN CONCENTRATION (PWMC)

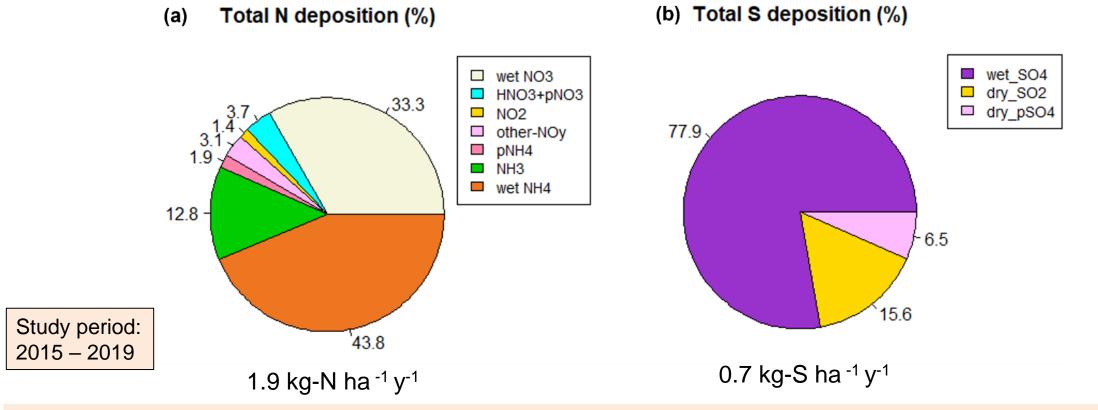
- For NO₃⁻, SO₄²⁻ and NH₄⁺, the differences of PWMC between the OS and Clean sectors were 76 ± 54 %, 65 ± 33 %, and 81 ± 44 %, respectively.
- The pH from the OS sector was the lowest.
- Excess cation concentration was calculated to estimate organic acids concentrations. Concentrations from OS sector were greater than the Clean Sector.


 $\overline{C_w} = \sum_{i=1}^n C_i P_i / \sum_{i=1}^n P_i$

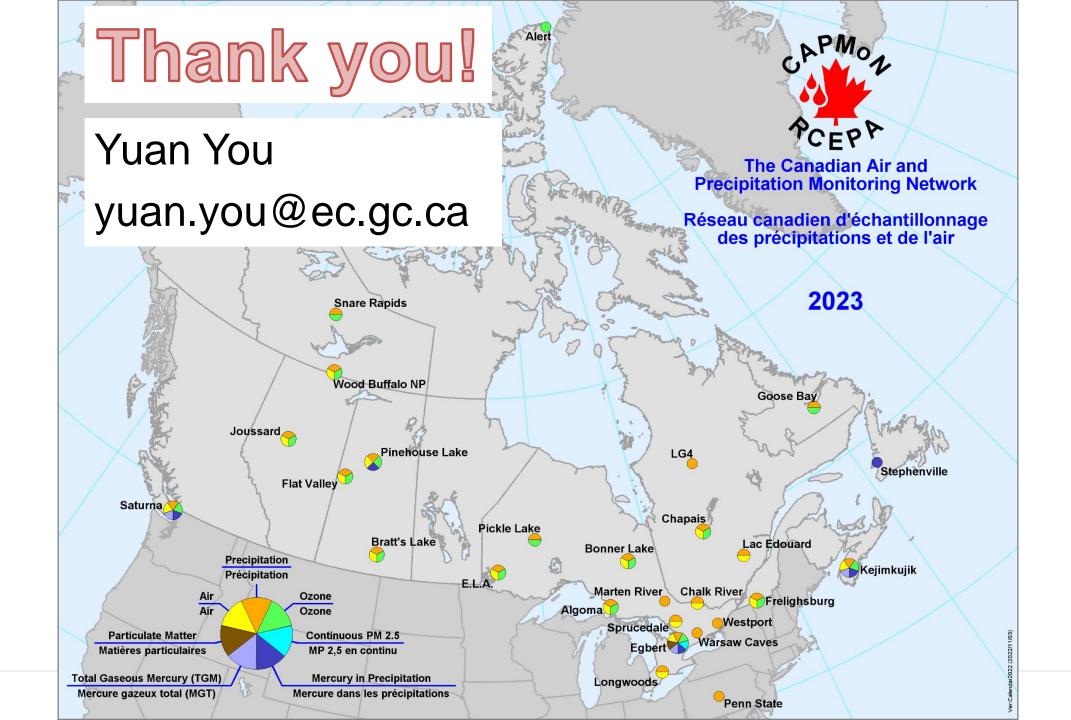
Excess cations ($\mu eq L^{-1}$) = measured cations + H⁺ – (measured anions + HCO₃⁻)

* The error bars of the PWMC are the 95% confidence intervals, by Cochran (1977).

RESULTS - DAILY WET DEPOSITION


- The wet deposition fluxes of NO₃⁻, SO₄²⁻, and NH₄⁺ in samples assigned to the OS and the Clean sector were also significantly different, respectively.
- Wet deposition fluxes from the SW and SK sectors were significant.

CONTRIBUTION OF OIL SANDS EMISSIONS (PHL)


		Contribution of the OS sector (%)	Anthropogenic (%)	Contribution of oil sands emissions (%)
Dry deposition	HNO ₃	15.2	64 ± 18	9.7 ± 2.7
	pNO ₃ -	8.9	51 ± 29	4.5 ± 2.6
	pNH ₄ +	11.3	34 ± 15	3.8 ± 1.7
	pSO42-	12.1	45 ± 19	5.4 ± 2.3
	SO ₂	18.9	55 ± 7.1	10.4 ± 1.3
	NO ₂	19.6	67 ± 5.9	13.1 ± 1.2
	NH ₃	-	-	Not significant
	Unidentified NO _v	14.9	51 ± 16	7.6 ± 2.3
Wet deposition	NO ₃ -	16.5	76 ± 54	12.5 ± 8.9
	NH_4^+	7.5	81 ± 44	6.0 ± 3.3
	SO42-	13.7	65 ± 33	8.7 ± 4.4
Total deposition	$HNO_3 + pNO_3^- + NO_2 + unidentified NO_y$			11.9 ± 7.4
	$NH_3 + pNH_4^+$			5.0 ± 2.7
	All N species			8.0 ± 3.5
	S species (SO ₂ + pSO_4^{2-})			8.7 ± 3.6

- The oil sands emissions in AOSR contributed the most to the dry deposition of NO_2 , followed by SO_2 and HNO_3 , consistent with expectation since SO_2 and NO_2 are the most abundant primary pollutants in the plumes from the oil sands region.
- The oil sands emissions contributed to 13%, 9% and 6% of the wet depositions of NO₃⁻, SO₄²⁻, and NH₄⁺, respectively.
- The oil sands emissions contributed to 8% and 9% of the total N and S deposition fluxes at this site during 2015-2019.
- Other sectors had significant contributions to the deposition.

CONTRIBUTIONS OF SPECIES TO TOTAL DEPOSITION

- Wet deposition dominated (77% and 78%) the total deposition of N and S.
- The observed total S deposition (about 44 eq ha⁻¹ y⁻¹) at the Pinehouse Lake site exceeded the critical loads (CLs) of acidity
 of 2 out of 5430 lake catchments within 100 km.
- Reduced N contributed more than oxidized N. The observed total N deposition is comparable to the medians of calculated CL_{nut}N of the two ecoregions around the site.
- Given the uncertainty in total N deposition and variability in CL_{nut}N results for ecoregions, it is important to keep monitoring the deposition of N species at sensitive regions in northern Saskatchewan.

