Analysis with a stationary wave model

e Question: What can we learn about the drivers of the CA flood event
with an idealized simple model?

* Goal: To better understand the underlying “forcing” and gather more
evidence supporting our hypothesis about the evolution of the event.
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* Dry dynamical core of an AGCM; nonlinear and based on primitive
equations with excessive damping to suppress transients.

Model equations: Ting and Yu (1998)
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* Solves for anomalies relative to 3-D basic state (U, V, T, Ps).

* Horizontal resolution: rhomboidal wavenumber-30 truncation
 Vertical resolution: 14 unevenly-spaced sigma levels
 Steady state after about 30 days (average of days 31-59 here)


https://doi.org/10.1175/1520-0469(1998)055%3c3565:SRTTHI%3e2.0.CO;2

Analysis with a stationary wave model

* In the following, the analysis procedure used to obtain a “forcing
sensitivity map” is detailed for an example target circulation: the
transient wave train anomaly over East Asia and the western North
Pacific during Dec. 21-23, 2022.

e This wave train is referred to as the Indian Ocean Shortwave, or ISW,
throughout the poster.



Question: Can we get a SWM response that resembles the Dec. 21-23 wave, and how?
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- anomalous divergent flow, vorticity
stretching, vorticity advection
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More generally, from which regions is vorticity forcing important for generating the
observed wave?

1. Do the same idealized SWM experiment with vorticity forcing imposed
at each of the locations marked with “x” (every 102 lon., 52 lat.):
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2. Lookateach-ofthe266-simulations: Perform EOF analysis on the SWM
responses to the different forcing locations to summarize the results.

Goal: Create a “forcing sensitivity map” for vorticity — highlights locations of
vorticity forcing relevant for the observed wave.
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Here, the PCs are scaled by the C values, to emphasize forcing locations
that would generate wave responses like the observed wave.
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This tells us that positive vorticity forcing
south/west of India would tend to
produce a wave response in the SWM
that resembles the observed wave on the
left. Positive vorticity forcing over the
blue areas would tend to produce a wave
response with opposite sign.
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