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Equations of motion
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Ideal gas law 𝑝 = 𝜌𝑅𝑇

The surface pressure tendency equation—a brief history

1. Margules (1904): combined the integrated form of the hydrostatic equation 
with the continuity equation, yielding a well-accepted and physically sound 
relationship between mass divergence and surface pressure tendency. 
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2. Godson (1948) showed alternative methods of obtaining the surface pressure 

tendency by combining the hydrostatic equation with the thermodynamic 
equation instead of the continuity equation. 
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3. Saucier (1955): “We know that pressure tendency is the integral of mass 

divergence above the point, but the relative importance of the three factors—
(i) horizontal velocity convergence, (ii) horizontal density advection, and (iii) 
vertical transport—is the point of doubt.”

4. Hess (1959): “Those quantities which we can determine adequately are not 
ordinarily important (i.e. the density advection term), and those which are 
significant we cannot measure properly.”
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5. Kong (2006): Obtained essentially the same equation as in Godson but 

applied it to understand the genesis of Hurricane Vince.
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Motivations

• The barometer is one of the earliest instruments invented with a 
direct applicability to weather forecasting.

• The causes of atmospheric pressure change are age-old topics of 
conjecture, study, and debate, approached from various viewpoints, 
and still a matter of controversy. (Saucier, 1955)

Derivation of the pressure tendency equation

 Starting from the time-derivative form of the hydrostatic equation, we 
substitute the continuity equation in place of Τ𝜕𝜌 𝜕𝑡  to obtain
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 Next we will attempt to eliminate 𝑤 from the equation.  We first solve for 𝑤 
from the second equation on the left and substitute the result into the above 
equation.  After rearrangement, we obtain the following equation.
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 This equation may be integrated from 𝑧s to ∞, assuming 𝑤s = 𝑤∞ = 0 to get

𝜕𝑝s

𝜕𝑡
= −𝜌s න

𝑧s

∞

−𝑔 Ԧ𝑣 ∙ ∇𝑝 ln 𝑇 − 𝑅
𝑐𝑝

𝑐𝑣

𝑔

𝑐𝑝
+

𝜕𝑇

𝜕𝑧
∇𝑧 ∙ Ԧ𝑣 + 𝑅

𝑔

𝑅
+

𝜕𝑇𝑣

𝜕𝑧

ሶ𝑄

𝑐𝑣𝑇
𝑑𝑧

Physical interpretations

1. Warm air advection leads to falling surface pressure.

2. Divergence leads to falling surface pressure, but only if 
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static instability (i.e. super-adiabatic).  This implies that convergence in a stable 
atmosphere would also lead to falling surface pressure.

3. So far we have not considered the equations of motion in x and y coordinates.  
The term that links the pressure tendency equation to the (x, y) equations of 
motion is the divergence term via the vorticity equation.
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 The vorticity equation contains a divergence term which can be solved to obtain
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 Substituting this into the pressure tendency equation further reveals the following 
dynamical effects on surface pressure tendency:
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5. Divergence due to tilting of vertical wind shear: Given the thermal wind relation, 
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6. The solenoid term is geostrophic temperature advection in disguise.  It partially 
cancels the temperature advection term in the pressure tendency equation.
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Derivations: Instead of making use of a single fundamental equation, attempt is made to make use of all fundamental equations in the derivations.

Derivation of the vertical velocity equation

 We begin with the time-derivative form of the hydrostatic equation
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 The hydrostatic equation may also be combined with the 
thermodynamic energy equation to obtain the following relationship.
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  The continuity equation may now be substituted in place of the rate of 
change of density.  If we differentiate the resulting equation with respect 
to 𝑧 and substitute it into the time-derivative form of the hydrostatic 
equation above, we would get
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 The continuity equation may be substituted again to eliminate the 
Τ𝜕𝜌 𝜕𝑡 term on the R.H.S., resulting in the following second order 

differential equation with 𝑤 being the independent variable.
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 If we neglect the higher order term
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 Integrating yields
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 This formulation of the vertical velocity satisfies the hydrostatic, 

thermodynamic, and continuity equations.

Physical interpretations

1. Low-level convergence leads to ascent aloft.

2. The wind shear term may be split into geostrophic and ageostrophic 

components, i.e. 
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which implies ascent aloft if local warming increases toward lower geopotential 

heights.

3. Diabatic heating leads to ascent aloft.

4. Diabatic heating and convergence at the lower boundary lead to ascent aloft.
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