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● Convective snow squalls are typically shallow features

● Often associated with heavy snow rates and hazardous driving conditions

● Radar beam often overshoots convective snow squalls at distances as close as 75-100 km from the radar location

● Terrain also causes beam blockage

● Difficulties monitoring and assessing squall intensity

● Satellite products can be utilized to augment radar gaps

● The goals of this project include:

○ Provide operational meteorologists a tool to better analyze (or “nowcast”) convective snow 

○ Establish relationships between GOES cloud products, radar data and in-situ observations

○ Create a database of events as training for a real time Machine Learning algorithm to estimate snow squall severity (similar to ProbSevere)

OVERVIEW

CONVECTIVE SNOW HAZARDS IN PENNSYLVANIA

Fig. 1: Plots generated from the Iowa Environmental Mesonet showing the total number of snow squall warnings by Weather Forecast Office (WFO) (a), and in 
Pennsylvania (b) since 2018.

● Snow squall warnings most frequent in the Northeast United States (Figure 1a)
● Snow squall warning hot spots in Central and Eastern Pennsylvania (Figure 1b)
● Radar blockage from terrain at KCCX poses difficulties in assessing snow squall severity

○  Can lead to significant travel disruption and impacts (Figure 2)

Fig. 2: Radar reflectivity base scan from KCCX on 28 March 2022 (1430 UTC). The star and circle denote the approximate location of a 50-car pileup in 
Pennsylvania facilitated by radar beam blockage
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• Satellite: GOES-16 era (December 2017 - current) (Figure 3)

– Cloud Optical Depth

– Cloud Water Path

The future development of this product can be described in three stages:

1. Growing the Database: Snow squall event archive and classification, along with the retrieval of 

relevant environmental parameters

2. Machine Learning: Ingestion of data into a machine learning algorithm—possible ML visibility 

product?

3. Operational Implementation and Verification: Incorporation of tool for operational use and 

verification with in-situ observations

RADAR, SATELLITE, AND IN-SITU DATA

FUTURE DEVLOPMENT

• Radar: NEXRAD Level II State College, PA (KCCX) radar files used and 

transposed onto a 1km cartesian grid (Figure 4)

• The cloud water path product in Figure 6a was most strongly correlated with reflectivity

– More exploration of this co-location with the larger dataset could yield more meaningful 

results

• Cloud Optical Depth in Figure 6b  does not seem to have a strong relationship with visibility 

or reflectivity

– Reflectivity and Visibility have a stronger relationship

– Better spatial and temporal scales could shed light on these relationships further

RESULTS

Fig. 3: Example of the Cloud Optical Depth (a) and the Cloud Water Path (b) satellite 
products used. 

Fig. 4: Example of radar reflectivity from KCCX transposed onto a cartesian grid

• In-Situ Data: Visibility taken from the High Resolution Rapid Refresh 

(HRRR) model (Figure 5)

Fig. 5: Example of HRRR visibility taken at forecast hour 0 (initialization)

Fig. 6: A plot comparing the cloud water path product and radar reflectivity (a), and 
three plots comparing reflectivity, visibility, and cloud optical depth (b)
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