

A Case Study of Cloud Seeding Impacts Using WRF-WxMod Simulations and SNOWIE Observations

U. Colorado: Zhixing Xie, K. Friedrich, NCAR: L. Xue, S. Chen, S. A. Tessendorf, U. Wyoming: J. R. French, C. Hohman

SNOWIE Seeding Case Analysis

What is new here?

- What are the characteristics of the seeding lines and background precipitation?
- How do model results compare to observational results?
- What is the difference in snowfall between the different model runs?

Also Check out

J3.3 Investigating Seeded Orographic Cloud Microphysics during SNOWIE Using WRF-WxMod Christopher Hohman (Monday)

J3.2 Observed Microphysical Evolution of a Seeded Cloud during SNOWIE Jeffrey R. French (Monday)

Weather Research and Forecasting Model-WxMod

WRF model

- 0000-0900 UTC 11 January
- 900 m resolution initiated with ERA5, ERAI, NARR, CFS2
- 81 terrain-following levels
- Thompson and Eidhammer aerosol-aware microphysics scheme
- Mellow-Yamada Nakanishi and Niino 2.5 planetary boundary layer scheme
- Noah-MP land surface model
- Rapid Radiative Transfer Model
- CTRL: Turn off the seeding package
- SEED: Turn on the seeding package
- (The model simulates the way seeding aircraft released Agl spatially and temporally. The released amount of Agl for all the driving datasets is the same)

CTRL	SEED	Driving Data	Configuration
900m_ERA5_CTRL	900m_ERA5_SEED	ERA5	Horizontal grids: 900×600
900m_ERAI_CTRL	900m_ERAI_SEED	ERAI	Time step: 5 s
900m_NARR_CTRL	900m_NARR_SEED	NARR	Simulation time: 0000-0900 UTC 11 Jan 2017 Vertical coordinate: 81 terrain-following ETA levels
900m_CFS2_CTRL	900m_CFS2_SEED	CFS2	Land surface model: Noah MP
			PBL scheme: MYNN
			Microphysics: Thompson-Eidhammer
			LES mode: None
			CCN: Climatology
900m_ERA5_03CCN	900m_ERA5_03CCN	ERA5	CCN: 30% Climatology
_CTRL	_SEED		

Tracking and Evolution of Seeding Lines

 Projected location seeding lines (solid lines) based on combined model/observed wind fields are combined with DOW X-band reflectivity field (right panel) PPI and UWKA WCR W-band cross sections (left panel)

In-situ Observations within Seeding Lines

- Earlier
- Reflectivity increases by 6 dB with time
- Ice concentration increase with time
- Cloud droplet concentration remains similar
- It takes 22-35 min for ice to grow into precipitating size in the three seeded clouds

WRF-WxMod: Model Evaluation

1. Cloud Droplet Concentration

ERAS_03CCN closest to UWKA in-situ observations

ERAS_03CCN comparison of each UWKA flight leg

WRF-WxMod: Model Evaluation 2. Ice-Water Content

9

University of Colorado Boulder

Observation ¹⁰

WRF-WxMod: Model Evaluation 3. Comparing to Soundings

1. Agl Concentration @ 4 km MSL (close to Agl release height)

Projected seeding lines based on obs

2017-01-11 04:30:00

from PJ radar (km)

South-

om PJ radar (km)

 $\overline{\Box}$

WRF-WxMod: Seeding Lines

3. Snowfall (comparison to gauge)

- CFS2 best at Silver Creek (seeding impacts on changes of precipitation = 2.9%)
- ERAI best at Five Corner and High Valley (seeding impacts on changes of precipitation 17.5% and 0.47%)
- large spatial variability might be attributed to environmental differences
- not a single model simulation induces the best results for all the gauge stations.

WRF-WxMod: Seeding Lines

4. Regional Precipitation Enhancement

Conclusion

Observations:

- Radar reflectivity increases from 0 dBZ to 12 dBZ over 15 mins / 25 km
- Precipitation falls out but cloud tops can remain at 4 km MSL (one of the two seeding lines)
- Water content and ice particles increase with time; Supercooled liquid water does not decrease as ice particles grow (in-situ obs)

Modeling Results

- Models compare differently in different categories; ERAx data slightly better
- All models are capably of representing seeding lines
- Wind affects the distribution (comparison with gauges)
- Seeding effect (precipitation amount differences 200-2000 af)

