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1. Introduction

2. Data and Methods
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• Dataset: E3SM Climate
Model Simulations

• Low-resolution, real-
geography data over
the equatorial Atlantic
Ocean near the
Caribbean Island.

• Lowest 3 levels near
surface (723 meters
and below)

• Time: July, year one

• Improvement in Eq. 1 aims to 
accurately capture this
process without compromising
computational efficiency.

• Objective: Apply equation
discovery methods to improve
calculation of moisture flux

• Current empirical equations
within climate models rely on
overgeneralizations of sub-
grid scale processes like MF.

Visualization of MF (Fig. 1)

MF Equation (Eq. 1)
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+ = slope of seg. 1: -0.703693
, = y-int of seg.1: 2.21097×10#$
4 = change in slope between segments: 44.3341
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PR Equation at 723 meters (Eq. 4)
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ClimSim Dataset (Fig. 2)
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• Change in height dz and MF w’q’ are calculated using Eq. 2-3

• Methods: Symbolic Regression and Piecewise Regression

• Input: Vertical gradient of moisture !&
!' ; Output: MF ;(<(

3. Results
Piecewise Regression Model (Fig. 3-5)

4. Discussion
• Two equations for 723 meters

high (Eq. 4, 5) were discovered
using the vertical gradient of 
moisture as input to PR and SR 
models.

• Due to the linear nature of the
model, PR is unable to capture 
the shape of the data as well
as SR.

• Both model predictions worsen
as the height above the
surface decreases.

• Eq. 4 and 5 do not hold for
other levels in the atmosphere.

• More accurate and 
interpretable equations than
Eq. 4 and 5 are necessary to 
make this study impactful.

• Hyperparameter tuning, adding
more features such as 
temperature or pressure, and 
adding more function
possibilities are all future steps
that can be taken to improve
model predictions.

Vertical line represents breaking point. Slanted lines represent model prediction. The model
could not converge as accurately on a breaking point in the lower levels of the atmosphere. 

r2 = 0.317748 r2 = 0.228564 r2 = 0.183091

Symbolic Regression Model (Fig. 6-8)

SR Equation at 723 meters (Eq. 5)SR Equation Tree (Fig. 9)

;(<( = ((2log −0.398 − 0.398 + 3!<!")
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Ran model for 45 generations with tournament size of 20. Mathematical operators were limited
to addition, subtraction, multiplication, log, and inverse. 

r2 = 0.2884
MAE = 0.5322

r2 = 0.2507
MAE = 0.5667

r2 = 0.1983
MAE = 0.6121

Eq. 5 is the interpretation of the equation tree that is
output by the SR model in Fig. 9.


