

Suitable Background Error Covariances for Radar Reflectivity Direct Assimilation in the Rapid Refresh Forecast System (RRFS)

Sho Yokota^{1,2}, Jacob R. Carley², Ting Lei^{3,2}, Shun Liu², Catherine Thomas², Daryl T. Kleist², Yongming Wang⁴, Yue Yang⁴, and Xuguang Wang⁴

¹JMA/Numerical Prediction Development Center and Meteorological Research Institute ²NOAA/NWS/NCEP/Environmental Modeling Center ³Lynker ⁴University of Oklahoma

January 31, 2024, 104th AMS Annual Meeting

Outline

- Motivation to improve static background error covariance for radar reflectivity direct assimilation
- Introduction of two methods
 - 1. Ensemble-based Tangent Linear Model (ETLM)
 - 2. Convective-scale Static Background Error Covariance (CSB)
- Cycling tests and discussion

How to Assimilate Radar Reflectivity

The radar reflectivity observation has a lot of potential to improve precipitation forecasts. However, it is not necessarily used effectively in the operational data assimilation systems.

- Cloud Analysis (e.g., Albers et al. 1996)
 - After data assimilation without reflectivity, hydrometeors and thermodynamical variables are adjusted based on reflectivity.
- 1D+3DVar (e.g., Caumont et al. 2010)
 - Atmospheric variables retrieved from reflectivity with 1DVar are assimilated with 3DVar
- Direct assimilation (e.g., Dowell et al., 2004)
 - Reflectivity is directly assimilated through ensemble covariances of variables estimated with ensemble forecasts

- Nonlinearity of observation operator
- Short correlation length and large bias
- How to create static B (static background error covariance)

https://mrms.nssl.noaa.gov/qvs/product_viewer/

\rightarrow How should we defeat these difficulties?

Radar Reflectivity Direct Assimilation

Cost function of Hybrid 3DEnVar:

$$J(\delta \mathbf{x}_{s}, \mathbf{a}_{1}, ..., \mathbf{a}_{K}) = \frac{1}{2}\beta_{s}(\delta \mathbf{x}_{s})^{T} \mathbf{B}^{-1}(\delta \mathbf{x}_{s}) + \frac{1}{2}\sum_{k=1}^{K} [\beta_{e}(\mathbf{a}_{k})^{T} \mathbf{A}^{-1}(\mathbf{a}_{k})] + \frac{1}{2}(\mathbf{H}\delta \mathbf{x} - \mathbf{d})^{T} \mathbf{R}^{-1}(\mathbf{H}\delta \mathbf{x} - \mathbf{d})$$

$$\delta \mathbf{x} = \delta \mathbf{x}_{s} + \sum_{k=1}^{K} (\mathbf{a}_{k} \circ \mathbf{x}_{k}^{e})$$
Linearized observation operator (if original operator is non-linear, the cost is not efficiently minimized)

Here, radar reflectivity is added and analyzed together as:

= |

servation operator is ar (identity matrix)

• Analysis increment is computed based on the cross-variable covariance to $\mathbf{x}_{k}^{e(\text{dBZ})}$

• However, optimal localization scale of $\mathbf{x}_{k}^{e(\text{dBZ})}$ is smaller than atmospheric variables

Wang and Wang

(2017. MWR)

Variable-Dependent Localization (VDL)

Wang and Wang (2023, *JAMES*) Yokota et al. (2024, submitted)

- Different localization scales are applied for atmospheric & hydrometeor variables
- However, $\mathbf{x}_{k}^{e(\text{hydro})}$ is sometimes underestimated (zero in some places)
 - In such places, reflectivity is not assimilated efficiently
- In addition, $\delta \mathbf{x}_s^{(\text{atmos})}$ is not affected by radar reflectivity assimilation directly
- Static B should be improved for reflectivity assimilation

Outline

- Motivation to improve static background error covariance for radar reflectivity direct assimilation
- Introduction of two methods
 - 1. Ensemble-based Tangent Linear Model (ETLM)
 - 2. Convective-scale Static Background Error Covariance (CSB)
- Cycling tests and discussion

Ensemble-Based Tangent Linear Model (ETLM) B: background error covariance

Cost function of 3DVar: $J(\delta \mathbf{x}_0) = \frac{1}{2} (\delta \mathbf{x}_0)^T \mathbf{B}^{-1} (\delta \mathbf{x}_0) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0 - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0 - \mathbf{d})$

If ETLM is introduced: $J(\delta \mathbf{x}_0) = \frac{1}{2} (\delta \mathbf{x}_0)^T \mathbf{B}^{-1} (\delta \mathbf{x}_0) + \frac{1}{2} (\mathbf{H} \mathbf{M} \delta \mathbf{x}_0 - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \mathbf{M} \delta \mathbf{x}_0 - \mathbf{d})$

$$= \frac{1}{2} (\delta \mathbf{x}_t)^T (\mathsf{MBM}^T)^{-1} (\delta \mathbf{x}_t) + \frac{1}{2} (\mathsf{H} \delta \mathbf{x}_t - \mathbf{d})^T \mathsf{R}^{-1} (\mathsf{H} \delta \mathbf{x}_t - \mathbf{d}) \qquad (\delta \mathbf{x}_t = \mathsf{M} \delta \mathbf{x}_0)$$

Cross-variable covariance is included in C^{1/2} • X_tX₀^T (excluded from I • X₀X₀^T)
 Control variables are correlated based on ensemble correlation with each other
 Reflectivity assimilation can change atmospheric variables

R: observation error covariance H: linearized observation operator

 $\delta \mathbf{x}_t$: analysis increment at time t

d: innovation vector

Convective-Scale Static B (CSB)

Cost function of 3DVar: $J(\delta \mathbf{x}_0) = \frac{1}{2} (\delta \mathbf{x}_0)^T \mathbf{B}^{-1} (\delta \mathbf{x}_0) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0 - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0 - \mathbf{d})$

If CSB is introduced

$$= J(\delta \mathbf{x}_0^{\text{CS}}) = \frac{1}{2} (\delta \mathbf{x}_0^{\text{CS}})^T \mathbf{B}_{\text{CS}}^{-1} (\delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}} - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}} - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}} - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}} - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}} - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x}_0^{\text{CS}}) + \frac{1$$

Wang and Wang (2021, MWR)

B: background error covariance R: observation error covariance H: linearized observation operator d: innovation vector $\delta \mathbf{x}_t$: analysis increment at time t

$[\Psi_{sf}]$	(stream function)		(zonal wind)	[f ստ	0	0	0	0		f f _u	0	0	0	0	0	0	0	0	0	0	0]
$\mathbf{\phi}_{\rm vp}$	(velocity potential)	v	(meridional wind)	r ₊ f ₊	f.	0	0	0		$\mathbf{r}_{vu}\mathbf{f}_{u}$	f_v	0	0	0	0	0	0	0	0	0	0
t	(temperature)	t	(temperature)	• φ• ψ	φ.	f	Ő	Ő		$\mathbf{r}_{tu}\mathbf{f}_{u}$	$\mathbf{r}_{tv}\mathbf{f}_{v}$	f _t	0	0	0	0	0	0	0	0	0
D _c	(surface pressure)	p _s	(surface pressure)	tψ	U	^t	0	U		r _{pu} f _u	$r_{pv}f_v$	r _{pt} f _t	f p	0	0	0	0	0	0	0	0
D rh	(relative humidity)	q _{rh}	(relative humidity)	r _p f _ψ	0	0	fp	0		r _{qu} f _u	$\mathbf{r}_{qv}\mathbf{f}_{v}$	r at f t	r _{qp} f _p	f a	0	0	0	0	0	0	0
	1	w	(vertical wind)	0	0	0	0	∫ f q_		r _{wu} f _u	r _{wv} f _v	r _{wt} f _t	r _{wp} f _p	r _{wa} f _a	f _w	0	0	0	0	0	0
		\mathbf{q}_{l}	(cloud water)	L		γ			J	$\mathbf{r}_{\mathrm{ln}}\mathbf{f}_{\mathrm{n}}$	r _{lv} f _v	r _{lt} f _t	r _{ln} f _n	rlafa	r _{lw} f _w	f	0	0	0	0	0
$\mathbf{o}\mathbf{x}_0$		q r	(rainwater)		E F	$\frac{1}{2}$	2			r _m f _n	r _{rv} f _v	r _{rt} f _t	r _m f _n	r _{ra} f _a	r _{rw} f _w	r _{ei} fi	fr	0	0	0	0
		q _s	(snow)		- 1					rf.	rf.	r.f.	r _{on} f _n	rafa	rf.	rafi	r."f.	f.	0	0	0
		q i	(cloud ice)	f _x :	recu	ırsiv	e filt	ter		r. f	r. f	r.f.	rsp-p	rsq-q	r. f	rof	r. f	r.f	f.	0	Ő
		q g	(graupel)	r _x :	bala	ance	ope	erato	ors	iu u	10 0	10.0	ıp p	ıq q	1W W	• 11 • 1	ir r	15 5	-1 - F	f	
		q _{dbz}	(reflectivity)							gu u	gv v	gt t	gp p	gq q	gw w	gl l	gr r	gs s	gi i	g	
		\Box								L ^r zu ^T u	r _{zv} r _v	r _{zt} r _t	г _{zp} т _p	r _{zq} r _q	r _{zw} r _w	r _{zl} r _l	r _{zr} r _r	r _{zs} r _s	r _{zi} r _i	r _{zg} r _g	Tz
		$\delta \mathbf{x}_{o}^{CS}$								L					7						
		00													$B_{cc}^{1/2}$						
															- 65						

Cross-variable covariance is included in B_{CS}

Control variables are correlated based on balance operators with each other Reflectivity assimilation can change atmospheric & hydrometeor variables

Single-Reflectivity Assimilation Test

Analysis increment (color) and first guess (contours) of sea-level pressure (hPa) and analysis increment of reflectivity (magenta, 30dBZ) in reflectivity assimilation at 1-km height (innovation: 50dBZ, obs error: 1dBZ)

Flow-dependent analysis within localization

No increment

Flow-dependent and broader, but no change for hydrometeors

Successful hydrometeor analysis, but narrow for surface pressure

Outline

- Motivation to improve static background error covariance for radar reflectivity direct assimilation
- Introduction of two methods
 - 1. Ensemble-based Tangent Linear Model (ETLM)
 - 2. Convective-scale Static Background Error Covariance (CSB)
- Cycling tests and discussion

Cycling Tests

VarDA name	Weight of (static B, ensemble B)	ETLM?	CSB?
3DVar	(1.0, 0.0)	-	-
3DVarETLM	(1.0, 0.0)	Yes	-
3DVarCSB	(1.0, 0.0)	-	Yes
EnVar	(0.5, 0.5)	-	-
EnVarETLM	(0.5, 0.5)	Yes	-
EnVarCSB	(0.5, 0.5)	-	Yes

Assimilated observations:

 surface pressure, wind, temperature, relative humidity, precipitable water vapor, radar radial wind, and radar reflectivity

.... : Initial conditions

: FV3LAM-based forecasts

Error covariance / Re-centering

- Localization for ensemble B ($e^{-20/3}$ scale):
 - 300 km (horizontally) for atmospheric variables
 - 15 km (horizontally) for hydrometeor variables
 - Cross-variable covariances: x0.05 (=15/300)
 - 1.1 Inp (vertically)
- Localization for ETLM ($e^{-20/3}$ scale)
 - 300 km (only horizontally)

Weighted RMSE of First Guess

number of analyses

Hurricane Ian (2022) Analysis

Analysis of composite reflectivity (color, dBZ) and sea-level pressure (contours, every 4 hPa) at **20220930 00z**

- Both ETLM and CSB improve reflectivity distribution
- ETLM tends to decrease reflectivity

107

28*

CSB tends to increase reflectivity

UFS

Summary and Future Works

- Static background error covariance (static B) was improved by ETLM and CSB for radar reflectivity assimilation.
- Ensemble-based tangent linear model (ETLM)
 - Impact of radar reflectivity assimilation is broad and flow-dependent for atmospheric variables, but no impact for hydrometeors
 - ETLM tends to decrease precipitation and makes RMSE smaller mainly for surface pressure, but larger for the other observations

Convective-scale static B (CSB)

- Hydrometeor is successfully analyzed, but correlation length is too short for atmospheric variables
- CSB tends to increase precipitation and makes RMSE smaller mainly for reflectivity, but larger for the other observations

• Future works

- Simultaneous application of conventional B, ETLM, and CSB
- Development of multiscale static B

References

- Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. *Wea. Forecasting*, **11**, 273–287, <u>https://doi.org/10.1175/1520-</u> 0434(1996)011%3C0273:TLAAPS%3E2.0.CO;2
- Black, T. L., J. A. Abeles, B. T. Blake, D. Jovic, E. Rogers, X. Zhang, E. A. Aligo, L. C. Dawson, Y. Lin, E. Strobach, P. C. Shafran, J. R. Carley, 2021: A limited area modeling capability for the Finite-Volume Cubed-sphere (FV3) dynamical core and comparison with a global two-way nest. *J. Adv. Model. Earth Syst.*, **13**, 1942–2466, <u>https://doi.org/10.1029/2021MS002483</u>
- Caumont, O., V. Ducrocq, E. Wattrelot, G. Jaubert, and S. Pradier-Vabre, 2010: 1D+3DVar assimilation of radar reflectivity data: A proof of concept. *Tellus*, **62**, 173–187. <u>https://doi.org/10.1111/j.1600-0870.2009.00430.x</u>
- Dowell, D. C., F. Zhang, L. J.Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: EnsembleKalman filter experiments. *Mon. Wea. Rev.*, **132**, 1982–2005, <u>https://doi.org/10.1175/1520-0493(2004)132%3C1982:WATRIT%3E2.0.CO;2</u>
- Duc, L. and K. Saito 2018: Verification in the presence of observation errors: Bayesian point of view. *Quart. J. Roy. Meteor. Soc.*, **144**, 1063–1090, <u>https://doi.org/10.1002/qj.3275</u>
- Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-Based EnVar system: methodology and experiment with the 8 May 2003 Oklahoma city tornadic supercell. *Mon. Wea. Rev.*, **145**, 1447–1471, <u>https://doi.org/10.1175/MWR-D-16-0231.1</u>
- Wang, Y., and X. Wang, 2021: Development of convective-scale static background error covariance within GSI-based hybrid EnVar system for direct radar reflectivity data assimilation. *Mon. Wea. Rev.*, **149**, 2713–2736, <u>https://doi.org/10.1175/MWR-D-20-0215.1</u>
- Wang, Y., and X. Wang, 2023: Simultaneous multiscale data assimilation using scale- and variable-dependent localization in EnVar for convection allowing analyses and forecasts: methodology and experiments for a Tornadic Supercell. J. Adv. Model. Earth Syst., 15, e2022MS003430, <u>https://doi.org/10.1029/2022MS003430</u>
- Yokota, S., J. R. Carley, T. Lei, S. Liu, D. T. Kleist, Y. Wang, and X. Wang, 2024: Scale- and variable-dependent localization for 3DEnVar data assimilation in the Rapid Refresh Forecast System. submitted, https://doi.org/10.22541/essoar.169945654.49454839/v1

BACK UP

Rapid Refresh Forecast System (RRFS)

- Next-generation convection-allowing operational forecast system in NCEP
 - One of the UFS applications
 - Based on the FV3 limited area model (LAM) (Black et al. 2021, JAMES)
 - 3-km horizontal grid
 - 65 vertical levels
 - Hourly updated by hybrid 3DEnVar (with 30-member EnKF)
 - Deterministic forecasts to at least 18h every 1h
 - Deterministic & ensemble forecasts to 60h every 6h (6 members x 2 initial times)

The impacts of ETLM and CSB for radar reflectivity assimilation are clarified in RRFS

Single-Reflectivity Assimilation Test with ETLM

Single-Reflectivity Assimilation Test with CSB

Analysis Increments

Analysis increment of surface pressure

(e) EnVarCSB

100934

covariances

Pressure Tendency

Time series of pressure tendency (domain-wide mean absolute change) in the forecasts from 20220930 00z

Department of Commerce // National Oceanic and Atmospheric Administration // 22

Hurricane Ian (2022) Analysis

Analysis of composite reflectivity (color, dBZ) and sea-level pressure (contours, every 4 hPa) at **20220930 00z**

dBZ

dBZ

Department of Commerce // National Oceanic and Atmospheric Administration // 24

dBZ

Hurricane Ian (2022) Analysis

Analysis of composite reflectivity (color, dBZ) and sea-level pressure (contours, every 4 hPa) at **20220930 00z**

UFS

28*1

dBZ

Department of Commerce // National Oceanic and Atmospheric Administration // 25

20