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Outline

• Motivation to improve static background error 

covariance for radar reflectivity direct assimilation

• Introduction of two methods

1. Ensemble-based Tangent Linear Model (ETLM)

2. Convective-scale Static Background Error Covariance (CSB)

• Cycling tests and discussion
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How to Assimilate Radar Reflectivity
The radar reflectivity observation has a lot of potential to improve precipitation forecasts.

However, it is not necessarily used effectively in the operational data assimilation systems.

Difficulties of direct assimilation of hydrometeor observations:

• Nonlinearity of observation operator

• Short correlation length and large bias

• How to create static B (static background error covariance)

→ How should we defeat

these difficulties?

• Cloud Analysis (e.g., Albers et al. 1996)

• After data assimilation without reflectivity, hydrometeors and 

thermodynamical variables are adjusted based on reflectivity.

• 1D+3DVar (e.g., Caumont et al. 2010)

• Atmospheric variables retrieved from reflectivity with 1DVar are 

assimilated with 3DVar

• Direct assimilation (e.g., Dowell et al., 2004)

• Reflectivity is directly assimilated through ensemble covariances 

of variables estimated with ensemble forecasts https://mrms.nssl.noaa.gov/qvs/product_viewer/
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Radar Reflectivity Direct Assimilation
Wang and Wang 

(2017, MWR)
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𝛿𝐱 = 𝛿𝐱𝑠 +෍

𝑘=1

𝐾

𝐚𝑘 ∘ 𝐱𝑘
𝑒 Linearized observation operator

(if original operator is non-linear, 

the cost is not efficiently minimized)

𝛿𝐱 dBZ = ෍

𝑘=1

𝐾

𝐚𝑘 ∘ 𝐱𝑘
𝑒 dBZ

→ H dBZ = I

Here, radar reflectivity is added and analyzed together as:

Ensemble perturbations 

of reflectivity

Analysis increment 

of reflectivity

Cost function of Hybrid 3DEnVar:

• Analysis increment is computed based on the cross-variable covariance to 𝐱𝑘
𝑒 dBZ

• However, optimal localization scale of 𝐱𝑘
𝑒 dBZ

is smaller than atmospheric variables

Observation operator is 

linear (identity matrix)
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Variable-Dependent Localization (VDL)

Analysis increment:

𝛿𝐱 atmos = 𝛿𝐱𝑠
atmos

+෍

𝑘=1

𝐾

𝐚𝑘
(atmos)

∘ 𝐱𝑘
𝑒 atmos

𝛿𝐱 hydro = ෍

𝑘=1

𝐾

𝐚𝑘
hydro

∘ 𝐱𝑘
𝑒 hydro

for atmospheric variables

(horizontal wind, temperature, 

humidity, and surface pressure)

for hydrometeor variables

(radar reflectivity, hydrometeors, 

and vertical wind)

A →
Alarge 𝑐Alarge

1/2
Asmall
1/2

𝑐Asmall
1/2

Alarge
1/2

Asmall Alarge

Alarge
1/2

Asmall
𝑇/2

Asmall

Wang and Wang 

(2023, JAMES)

Yokota et al. 

(2024, submitted)

• Different localization scales are applied for atmospheric & hydrometeor variables

• However, 𝐱𝑘
𝑒 hydro

is sometimes underestimated (zero in some places)

• In such places, reflectivity is not assimilated efficiently

• In addition, 𝛿𝐱𝑠
(atmos)

is not affected by radar reflectivity assimilation directly

• Static B should be improved for reflectivity assimilation

Localization:

𝐚𝑘 →
𝐚𝑘
(atmos)

𝐚𝑘
(hydro)

Control vector:

0 ≤ 𝑐 ≤ 1
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Outline

• Motivation to improve static background error 

covariance for radar reflectivity direct assimilation

• Introduction of two methods

1. Ensemble-based Tangent Linear Model (ETLM)

2. Convective-scale Static Background Error Covariance (CSB)

• Cycling tests and discussion
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Ensemble-Based Tangent Linear Model (ETLM)

𝐽 𝛿𝐱0 =
1

2
𝛿𝐱0

𝑇B−1 𝛿𝐱0 +
1

2
H𝛿𝐱0 − 𝐝 𝑇R−1 H𝛿𝐱0 − 𝐝Cost function of 3DVar:

If ETLM is introduced:

M = X𝑡X0
𝑇 X0X0

𝑇 −1 C1/2 ∘ X𝑡X0
𝑇 I ∘ X0X0

𝑇 −1Here,
Localization + 

Simplification

• Cross-variable covariance is included in C1/2 ∘ X𝑡X0
𝑇 (excluded from I ∘ X0X0

𝑇)
➢Control variables are correlated based on ensemble correlation with each other
➢Reflectivity assimilation can change atmospheric variables

identity matrix (to be able to compute inverse matrix)
(minimum X0X0

𝑇 is set to [horizontal mean] x 0.01 not to make M too large)

normalized localization matrix (realized by recursive filter)

ensemble perturbations at time 𝑡

=
1

𝑁−1
𝛿𝐱𝑡,1

𝑓
⋯ 𝛿𝐱𝑡,𝑁

𝑓
(𝑁: ensemble size)

𝐽 𝛿𝐱0 =
1

2
𝛿𝐱0

𝑇B−1 𝛿𝐱0 +
1

2
HM𝛿𝐱0 − 𝐝 𝑇R−1 HM𝛿𝐱0 − 𝐝

=
1

2
𝛿𝐱𝑡

𝑇 MBM𝑇 −1 𝛿𝐱𝑡 +
1

2
H𝛿𝐱𝑡 − 𝐝 𝑇R−1 H𝛿𝐱𝑡 − 𝐝 𝛿𝐱𝑡 = M𝛿𝐱0

B: background error covariance 

R: observation error covariance

H: linearized observation operator

𝐝: innovation vector

𝛿𝐱𝑡: analysis increment at time 𝑡
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Convective-Scale Static B (CSB)
Cost function of 3DVar:

If CSB is introduced:

• Cross-variable covariance is included in BCS
➢Control variables are correlated based on balance operators with each other
➢Reflectivity assimilation can change atmospheric & hydrometeor variables

𝐽 𝛿𝐱0
CS =

1

2
𝛿𝐱0

CS 𝑇
BCS
−1 𝛿𝐱0

CS +
1

2
H𝛿𝐱0

CS − 𝐝
𝑇
R−1 H𝛿𝐱0

CS − 𝐝

𝐽 𝛿𝐱0 =
1

2
𝛿𝐱0

𝑇B−1 𝛿𝐱0 +
1

2
H𝛿𝐱0 − 𝐝 𝑇R−1 H𝛿𝐱0 − 𝐝

B: background error covariance

R: observation error covariance

H: linearized observation operator

𝐝: innovation vector

𝛿𝐱𝑡: analysis increment at time 𝑡

Wang and Wang 

(2021, MWR)

fu 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

rvufu fv 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

rtufu rtvfv ft 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

rpufu rpvfv rptft fp 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

rqufu rqvfv rqtft rqpfp fq 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

rwufu rwvfv rwtft rwpfp rwqfq fw 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

rlufu rlvfv rltft rlpfp rlqfq rlwfw fl 𝟎 𝟎 𝟎 𝟎 𝟎

rrufu rrvfv rrtft rrpfp rrqfq rrwfw rrlfl fr 𝟎 𝟎 𝟎 𝟎

rsufu rsvfv rstft rspfp rsqfq rswfw rslfl rsrfr fs 𝟎 𝟎 𝟎

riufu rivfv ritft ripfp riqfq riwfw rilfl rirfr risfs fi 𝟎 𝟎

rgufu rgvfv rgtft rgpfp rgqfq rgwfw rglfl rgrfr rgsfs rgifi fg 𝟎

rzufu rzvfv rztft rzpfp rzqfq rzwfw rzlfl rzrfr rzsfs rzifi rzgfg fz

fψ 𝟎 𝟎 𝟎 𝟎

rϕfψ fϕ 𝟎 𝟎 𝟎

rtfψ 𝟎 ft 𝟎 𝟎

rpfψ 𝟎 𝟎 fp 𝟎
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(zonal wind)

(meridional wind)

(temperature)
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(vertical wind)

(cloud water)

(rainwater)
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(graupel)

(reflectivity)
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(velocity potential)
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(relative humidity)

B1/2𝛿𝐱0
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fx : recursive filter
rx : balance operators
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𝐭
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𝐮
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𝐭
𝐩s
𝐪rh
𝐰
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Single-Reflectivity Assimilation Test
Analysis increment (color) and first guess (contours) of sea-level pressure (hPa) and analysis increment of 

reflectivity (magenta, 30dBZ) in reflectivity assimilation at 1-km height (innovation: 50dBZ, obs error: 1dBZ)

Flow-dependent analysis 

within localization

No increment Flow-dependent and 

broader, but no change 

for hydrometeors

Successful hydrometeor 

analysis, but narrow for 

surface pressure

PureEnVar

with VDL

3DVar 3DVarETLM 3DVarCSB
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Outline

• Motivation to improve static background error 

covariance for radar reflectivity direct assimilation

• Introduction of two methods

1. Ensemble-based Tangent Linear Model (ETLM)

2. Convective-scale Static Background Error Covariance (CSB)

• Cycling tests and discussion
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Cycling Tests

Var

DA

En

KF

36h forecast 
Var

DA

En

KF

Var

DA

En

KF

Var

DA

En

KF

Var

DA

20z

En

KF

Var

DA

19z

En

KF

Var

DA

18z

En

KF

Var

DA

17z

En

KF

3D

Var

16z

En

KF

3D

Var

15z 00z23z22z21z

GFS 3h 

forecast

GDAS 9h 

ensemble 

forecasts

: Initial conditions

: FV3LAM-based forecasts

: Error covariance / Re-centering

VarDA

name

Weight of

(static B, 

ensemble B)

ETLM? CSB?

3DVar (1.0, 0.0) - -

3DVarETLM (1.0, 0.0) Yes -

3DVarCSB (1.0, 0.0) - Yes

EnVar (0.5, 0.5) - -

EnVarETLM (0.5, 0.5) Yes -

EnVarCSB (0.5, 0.5) - Yes

• Assimilated observations:
• surface pressure, wind, temperature, relative 

humidity, precipitable water vapor, radar radial wind, 

and radar reflectivity

• Localization for ensemble B (𝑒−20/3 scale):

• 300 km (horizontally) for atmospheric variables

• 15 km (horizontally) for hydrometeor variables

• Cross-variable covariances: x0.05 (=15/300)

• 1.1 lnp (vertically)

• Localization for ETLM (𝑒−20/3 scale)

• 300 km (only horizontally)

• Period: September 29, 2022

• Region: CONUS

• Ensemble size: 30
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Weighted RMSE of First Guess
Weighted RMSE (WRMSE) for observations assimilated in 20220929 18-24z

WRMSE =
2

𝑁𝑜
෍

𝑖=1

𝑁𝑡

𝐽𝑖
𝐼𝑛𝑖𝑡

initial cost at 

i-th analysis

total number of observations 

assimilated in all analyses

number of analyses

(Duc and Saito 2018, QJRMS)

• ETLM makes smaller WRMSE for 

surface pressure (and reflectivity)

• CSB makes smaller WRMSE for 

reflectivity (and surface pressure)

• However, both make larger WRMSE 

for the other observations
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Analysis of composite 

reflectivity (color, dBZ) and 

sea-level pressure (contours, 

every 4 hPa) at 20220930 00z

Hurricane Ian 
(2022) Analysis

3DVar 3DVarETLM 3DVarCSB

EnVar EnVarETLM EnVarCSB MRMS(obs)
• Both ETLM and CSB 

improve reflectivity 

distribution

• ETLM tends to decrease 

reflectivity

• CSB tends to increase 

reflectivity

Black: Hurricane 

track forecast from 

these analyses

White: Best track
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Summary and Future Works
• Static background error covariance (static B) was improved by ETLM and 

CSB for radar reflectivity assimilation.

• Ensemble-based tangent linear model (ETLM)
• Impact of radar reflectivity assimilation is broad and flow-dependent for 

atmospheric variables, but no impact for hydrometeors
• ETLM tends to decrease precipitation and makes RMSE smaller mainly for surface 

pressure, but larger for the other observations

• Convective-scale static B (CSB)
• Hydrometeor is successfully analyzed, but correlation length is too short for 

atmospheric variables
• CSB tends to increase precipitation and makes RMSE smaller mainly for reflectivity, 

but larger for the other observations

• Future works
• Simultaneous application of conventional B, ETLM, and CSB
• Development of multiscale static B
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BACK UP
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Rapid Refresh Forecast System (RRFS)
• Next-generation convection-allowing 

operational forecast system in NCEP
• One of the UFS applications

• Based on the FV3 limited area model 
(LAM) (Black et al. 2021, JAMES)

• 3-km horizontal grid

• 65 vertical levels

• Hourly updated by hybrid 3DEnVar (with 
30-member EnKF)

• Deterministic forecasts to at least 18h 
every 1h

• Deterministic & ensemble forecasts to 60h 
every 6h (6 members x 2 initial times)

The impacts of ETLM and CSB for radar 

reflectivity assimilation are clarified in RRFS
RRFSv1 Compute Domain (red)
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call control2state(hat,mval,bias) !transform hat to mval (and bias)

if (l4dvar) then

if (l_hyb_ens) then

call ensctl2state(hat,mval(1),eval)

mval(1)=eval(1)

end if

call model_tl(mval,val,llprt)  !TLM from mval to val

else

if (l_hyb_ens) then

if (l_etlm) then

call etlm(mval(1),emval(1:nobs_bins),0) !ETLM from mval to emval

call ensctl2state(hat,emval,eval)       !transform hat to eval and add emval

else

call ensctl2state(hat,mval(1),eval)     !transform hat to eval and add mval

end if

do ii=1,nobs_bins

val(ii)=eval(ii)

end do

else

do ii=1,nobs_bins

val(ii)=mval(1)

end do

end if

end if

Coding ETLM in GSI
Implement in subroutine “c2s” (and “c2s_ad”)

Bstatic
1/2

→ MBstatic
1/2

Bstatic
1/2

→ MensBstatic
1/2

BETLM = MensBstaticMens
𝑇

ETLM: Mens = CETLM
1/2

∘ X𝑡X0
𝑇 I ∘ X0X0

𝑇 −1

X𝑡 =
1

𝑁 − 1
𝛿𝐱𝑡,1

𝑓
⋯ 𝛿𝐱𝑡,𝑁

𝑓

Bens,𝑡 = Cens ∘ X𝑡X𝑡
𝑇

Localization 

for EnVar

Localization 

for ETLM
Identify matrix 

(diagonal)
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Single-Reflectivity Assimilation Test with ETLM
Analysis increment (color) and first guess (contours) of surface pressure (hPa)

in assimilation of radar reflectivity at 1-km height (innovation: 50 dBZ, observation error: 1 dBZ)

Flow-dependent analysis 

within localization

No increment

Using smoothed 

ensemble

Flow-dependent and broader than PureEnVar, 

but no change for hydrometeors
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Single-Reflectivity Assimilation Test with CSB
Analysis increment (color) and first guess (contours) of surface pressure (hPa)

in assimilation of radar reflectivity at 1-km height (innovation: 50 dBZ, observation error: 1 dBZ)

Without 

cross-variable 

covariances

Flow-dependent analysis 

within localization

No increment Successful hydrometeor analysis, but small 

correlation length for atmospheric variables
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Analysis Increments
Analysis increment of surface pressure 

at 20220929 17z

Using 

smoothed 

ensemble

Without 

cross-variable 

covariances
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Pressure Tendency
Time series of pressure tendency (domain-wide mean absolute change) in the forecasts from 20220930 00z
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Weighted RMSE of First Guess
Weighted RMSE (WRMSE) for observations 

assimilated in 20220929 18-24z

WRMSE =
2

𝑁𝑜
෍

𝑖=1

𝑁𝑡

𝐽𝑖
𝐼𝑛𝑖𝑡

initial cost at 

i-th analysis

total number of observations 

assimilated in all analyses

number of analyses

(Duc and Saito 

2018, QJRMS)
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Analysis of composite 

reflectivity (color, dBZ) and 

sea-level pressure (contours, 

every 4 hPa) at 20220930 00z

Hurricane Ian 
(2022) Analysis

3DVar 3DVarETLM 3DVarETLMS

EnVar EnVarETLM EnVarETLMS MRMS(obs)

Black: Hurricane 

track forecast from 

these analyses

White: Best track

Using smoothed 

ensemble
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Analysis of composite 

reflectivity (color, dBZ) and 

sea-level pressure (contours, 

every 4 hPa) at 20220930 00z

Hurricane Ian 
(2022) Analysis

3DVar 3DVarCSB 3DVarCSBVL

EnVar EnVarCSB EnVarCSBVL MRMS(obs)

Black: Hurricane 

track forecast from 

these analyses

White: Best track

Without 

cross-variable 

covariances


	スライド 1
	スライド 2: Outline
	スライド 3: How to Assimilate Radar Reflectivity
	スライド 4: Radar Reflectivity Direct Assimilation
	スライド 5: Variable-Dependent Localization (VDL)
	スライド 6: Outline
	スライド 7: Ensemble-Based Tangent Linear Model (ETLM)
	スライド 8: Convective-Scale Static B (CSB)
	スライド 9
	スライド 10: Outline
	スライド 11: Cycling Tests
	スライド 12: Weighted RMSE of First Guess
	スライド 13: Hurricane Ian (2022) Analysis
	スライド 14: Summary and Future Works
	スライド 15
	スライド 16: BACK UP
	スライド 17: Rapid Refresh Forecast System (RRFS)
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23: Weighted RMSE of First Guess
	スライド 24: Hurricane Ian (2022) Analysis
	スライド 25: Hurricane Ian (2022) Analysis

