Using the Nondivergent Wind to Diagnose Mesoscale Circulation Systems in Convection-Allowing Models		
	Thomas J. Galarneau, Jr.	
Emails themas adamson Quesas on	NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma	munta Dan Kanaan and Lau Wiekan
	Diagnostic Equations	Diagnostic Signatures of Ascent for MCS Case
 Mesoscale circulation systems modulate when and where deep, moist convection occurs Dynamical diagnosis of mesoscale ascent associated with these systems is an important component of the research and forecast process Continuing increases in resolution of operational NWP models are resulting in the improved representation of mesoscale circulation systems, but these increases also have resulted in poisier 	• Vector frontogenesis: $\mathbf{F} = \frac{d}{dt} \nabla \theta = F_n \hat{\mathbf{n}} + F_s \hat{\mathbf{s}}$ • $F_n = \frac{1}{2} \nabla \theta (D - E \cos 2\beta) = \nabla \theta \frac{\partial v_n}{\partial n}$ vert (Keyser et al. 1988) $\theta - \Delta \theta$ • $F_s = \frac{1}{2} \nabla \theta (\zeta + E \sin 2\beta) = \nabla \theta \frac{\partial v_n}{\partial s}$ vert (Keyser et al. 1988) $\theta - \Delta \theta$ • $F_s = \frac{1}{2} \nabla \theta (\zeta + E \sin 2\beta) = \nabla \theta \frac{\partial v_n}{\partial s}$ vert (Keyser et al. 1988) $\theta - \Delta \theta$ • $\frac{d}{dt} = \frac{\partial}{\partial t} + V_{nd} \cdot \nabla$ in the alternative balance framework (Davies Jenes 1991; Keyser et al. 1992) • F_n is the frontogenetical component and highlights banded vertical motion about baroclinic zones	MRMS Composite Reflectivity: 10 Aug 2020
 diagnostic signatures of mesoscale ascent We hypothesize that using the nondivergent wind (V_{nd}) in place of the geostrophic wind (V_g) in the alternative balance framework will produce cleaner diagnostic signatures of mesoscale ascent in convection-allowing operational models (CAMs) Substituting V_{nd} (ψ) for V_g (Φ) is fully consistent 	 F_s is the rotational component and highlights central vertical motion associated with synoptic-scale waves F components in standard Cartesian coordinates are defined F = (-∂V_{nd}/∂x · ∇_pθ, -∂V_{nd}/∂y · ∇_pθ) = (F₁, F₂) Q is the QG analog to F, where d/dt_g = ∂/∂t + V_g · ∇ Omega equation: σ∇²_pω + f₀² ∂^{2ω}/∂n² = -2h(∇_p · Q) 	Solution Solution Solution
 with QG theory (Nielsen-Gammon and Gold 2008) Use of V_{nd} has been shown to improve diagnostic signatures of mesoscale ascent with snowbands in cold season cyclones in global NWP models (Galarneau and Keyser 2008; Kenyon et al. 2020) We will extend QG diagnosis to CAMs by comparing diagnostic signatures of mesoscale ascent using V_{nd} and V_g for two warm season convection cases Data and Wind Definitions 	Comparison of V_{nd}/F and V_g/Q for Supercell Case MRMS Composite Reflectivity: 20 May 2019 MRMS Composite Reflectivity: 20 May 2019 MRMS Composite Reflectivity: 20 May 2019 MRMS Composite Reflectivity: 20 May 2019	Subject Subject Subje
 Operational High-Resolution Rapid Refresh (HRRR) analyses at 3-km grid spacing Poisson equation for streamfunction (ψ) and velocity potential (χ) are solved with homogeneous boundary conditions (ψ = χ = 0) Wind definitions: V_{div} = ∇_pχ, V_{rot} = k̂×∇_pψ, V_{nd} = V - V_{div}, V_a = ¹/_σk̂×∇_pφ 	$ \begin{array}{c} \text{ Solution} \\ \text{ solution} $	 Convection initiated north of a frontogenetical baroclinic zone and grew upscale to a derecho Filtered F_n and −∇_p · F_n fields are cleaner than Q_n, and show banded ascent forcing on warm side of front associated with frontogenesis
 Raymond (1988) high-order low-pass filter used to reduce small-scale motions (e.g., gravity wave signatures in geopotential field) but retain forcing from coherent mesoscale features 	Q, and mark ascent regions near dryline in TX and MCS in KS	• Use of V_{nd} in the alternative balance framework produces cleaner and more coherent diagnostic signatures of mesoscale ascent and frontogenesis with less spatial smoothing than with V_g