Interannual variability and trend analysis of atmospheric formaldehyde in boreal autumn over recent decades Junhua Liu^{1,2}, Bryan N. Duncan², Sarah A. Strode^{1,2}, Qing Liang², Jerald Ziemke^{1,2}, Daniel C. Anderson^{2,3}, Peter R. Colarco², Amir H. Souri^{1,2}, Michael E. Manyin^{2,4}, Zolal Ayazpour⁵, Gonzalo Gonzalez Abad⁵ 1: GESTAR II, Morgan State University, Baltimore, MD, USA, 2: NASA Goddard Space Flight Center, Greenbelt, MD, USA, 3: GESTAR II, University of Maryland Baltimore County, Baltimore, MD, USA, 4: Science Systems and Applications, Inc, Lanham, MD, USA, 5: Center for Astrophysics, Harvard, MA, USA 1. Summary 3. Data and Model Satellite observations - OMI Smithsonian Astrophysics Observatory (SAO) CH₂O retrieval investigates regional sources influencing its interannual variability (IAV) and trends V4: updated Level 1B radiances an improved radiative transfer model a new reference sector correction methodology Better agreement with OMPS (Ozone Mapping and Profiler Suite) CH₂O retrieval **GEOSCCM** RefD1 simulation: Free running hindcast simulation of 1960-2018 supporting the Chemistry-Climate Modeling Initiative (CCMI) GMI chemistry, GOCART aerosol and an artificial stratospheric O_3 tracer (StatO₃). • C90 resolution, 72 vertical levels Anthropogenic emissions are from CEDS (1980–2014) and SSP2–4.5 (2015-2017) Biomass burning emissions are from CMIP6 harmonized emission inventory (1980-2015) and GFED4 (2016-2017) Isoprene plays an important role in controlling the IAV of CH₂O over most Biogenic emissions through online calculation with Model of Emissions of Gases and regions, except in Indonesia, where VOCBB (VOCs from biomass burning) Aerosols from Nature (MEGAN). 4. Initial model evaluation OMI mean (05-18) Eastern China (20-40N, 100-122E Northern Africa (4-15N,16W-40E 1.2 r=0.45 0.080 VOCFF (VOCs from fossil fuel emissions) significantly impact CH₂O trend over 0.060 0.040 Isoprene drives positive trends in simulated CH₂O over South America, despite 0.020 05 07 09 11 13 15 17 19 60°S India (8-30N, 68-88E) South America (40S-11N,34-81W 0.000 r=0.88 ₁ r=0.86 0.020 2. Introduction RefD1 mean (05-18) -0.04 CH₄ oxidation Southeast US (30N-42N,100W-75W Indonesia (10S-6N,95-140E) Isoprene ndirect secondar\ Alkenes regions. production F r=0.95 r=0.34 Aromatics $CO + HO_{2}$ **NMVOC** oxidatior Alkanes • CH3OOH and photolysis) $CO + HO_2 + H_2O$ Direct sources • Wildfires IAV. 0.29 0.57 0.86 1.14 1.43 1.71 2.00 - RefD1 • RefD1 reproduces the observed spatial variations in CH₂O, showing

Liu et al. 2022

- Locally elevated mixing ratio over the southeast US, South America, equatorial and southern Africa, India, Eastern China, Indonesia.
- Low CH₂O mixing ratio over the remote oceanic region, mainly from methane oxidation.
- RefD1 shows notable overestimations in southeast US and South America, along with underestimations in southern Africa.
- Model reproduces seasonal cycles of observed CH₂O over most regions.

5. Sources at	tributions - F	Regional Multi Analysis
$CH_2O(t) = \alpha + \beta_0 t$	$+\beta_1 * ISOP(t)$	$+\beta_2 * VOCBB(t)$
Regional area weighted CH ₂ O	Isoprene biogenic source	VOC emissions from biomass burning
 MLR analysis from VOCs: The sum of Excluding TS in th Excluding ENSO in isoprepe (India and 	n 2005 to 2018 d f CH_2O , C_4H_8O , C_4 ne MLR due to its n regions where	uring boreal autures C ₃ H ₆ , and higher a s high correlation it is highly correl

- isoprene (inula anu southeast US).
- β_0 : Trend term.
- $\beta_{1,n}$: Regression coefficients (weights), indicating relative importance of each regressor.

umn (SON) over six selected regions. alkenes, C_2H_6 , C_3H_8 , C_4H_{10} , C_2H_4O . n with isoprene in the model. lated with VOCBB (Indonesia) or

Junhua.liu@nasa.gov