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Overview

* Motivation

* Solar Dynamics Observatory (SDO)

* Neural Network-based Image Compression Approaches
* Neural Network-based Video Compression Approaches

e Our Contribution: Adaptation of Transformer-based Video Compression Scheme to SDO
Image Dataset

e Results and Comparison

* Conclusions and future work
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Motivation

* The sunis essential for life in the solar system but can also wreak havoc on life and technology
infrastructure in space and on ground (impacts of space weather)

* There is growing impetus on studying the sun for advanced scientific knowledge towards

improved predictive capability

*  Multiple active and planned (deep-space) missions imaging the sun from different locations

. SDO

SOHO
STEREO Aand B
Solar Orbiter
Parker Solar Probe
Vigil (planned by ESA)
*  These missions (will) require effective and efficient data compression schemes to increase science and information

return for operations

NASA's STEREO Sees the Enﬁre Sun
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Solar Dynamics Observatory

e SDO is one-of-a-kind mission dedicated to

continuously observe the sun from GEO
*  Launched in 2010, it has a dedicated ground
station for data transmission
* It captures a stack of 4K solarimages across 9
different spectral wavelengths every 12 seconds
* Thisresults in 1.4TB of data each day, totaling
multiple PBs thus far.

* The data collected has provided a wealth of
scientific information about our star

* For this demonstration purpose, we use the
curated ML-ready dataset
(arXiv:1903.04538)
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Input Image

Neural-based Image Compression
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Video Compression

e Video Compression: Remove temporal redundancy + spatial redundancy
e There are two types of coding: Intraframe coding, Interframe coding

e Intraframe coding : Image compression Interframe coding: Using reference frame

+ motion information

A YA YAYA!

6 Frame GOP
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Inter-frame Pipeline
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SSF: Neural-based Video Compression
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Transformer Blocks

e Transformer block is the main part of the Transformer architecture.

e The Transformer block consists of multiple layers of self-attention,
feed-forward neural network, layer normalization and residual

connection.
e Self-attention helps model to capture long-range dependencies.

* FLaWinis constructed by replacing the feed-forward networkin the
Swin Transformer block with the fused local-aware feed-forward :
network(FLaFF) :Extracting local dependencies + global dependencies [L
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Results and Comparison

e Comparison Metric for Distortion:
PSNR: Signal-to-noise ratio
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Conclusion and Future Work

* Applying the video compression approach on the dataset boost the compression ratio because of
the high temporal correlation between the images.

. Utilizing Transformers-based autoencoder, we improve the network capability to capture
correlations more robustly, leading to a more decorrelated latent code.

* We demonstrate that our Transformer-based compression scheme outperform traditional
codes for the SDO data.

* Next step involves adaptation of the proposed compression scheme to Level 0 (no post-
processing) data.

 The more accurate entropy model is needed to estimate the distribution
of the latent representations.

e Other types of Transformer networks can be designed to improve the compression efficiency.
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THANK YOU!

Contact:
ak00043@mix.wvu.edu

This work is supported by NASA award 80NSSC21M032
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