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Background and motivation

Convection Allowing Models (CAMs) have high spatial resolutions and they can
partially resolve small-scale convection systems.

An important use of CAMs is to predict severe weather. However, when
ensemble predictions are needed, it is a challenge to maintain a large number of
CAM runs.

Therefore, we are seeking an alternative—using deep generative models to
create “synthetic” CAM ensembles from a deterministic run, and prepare
ensemble severe weather predictions.




Research overview

Research goal.

Post-process deterministic CAM forecasts and provide probabilistic ensemble
predictions of severe weather (tornadoes, hail, and wind gusts) by using deep
generative models and Convolutional Neural Networks (CNNs).

Research questions:

1. Can we generate ensembles of forecast fields and severe weather
probabilities from deterministic CAM runs?

2. How well can CNN predict severe weather probabilities from high-resolution
CAM forecasts?



Data: The CAM forecast and predictors

Name Abbreviation Type
Latitude - Static
Longitude - Static
Elevation - Static
Max/composite radar reflectivity CREF Explicit
Hourly maximum 0-2 km updraft helicity 0-2 km UH Explicit
Hourly maximum 2-5 km updraft helicity 2-5km UH Explicit
Hourly accumulated precipitation APCP Explicit
Hourly maximum 10-m wind speed 10-m SPD Explicit
Graupel mass - Explicit
Mean sea level pressure MSLP Environment
2-m air temperature 2-m Temp Environment
2-m dewpoint temperature 2-m Dewpoint  Environment
Surface-based convective available potential energy CAPE Environment
Surface-based convective inhibition CIN Environment
0-1 km storm-relative helicity 0-1 km SRH  Environment
0-3 km storm-relative helicity 0-3 km SRH  Environment
0-6 km u component wind shear 0-6 km U shear Environment
0-6 km u component wind shear 0-6 km V shear Environment

High-Resolution Rapid
Refresh version 3 and
version 4 (HRRR v3, v4)

0000 UTC initializations
Hourly forecasts: 02-24Z

e Storm-scale explicit
predictors (6)
e Environmental predictors

(9)
e Static predictors (3)

*CIN considers magnitude only
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Data: Observations and region of interest
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reports. Regridded to
the output domain with
4-hr time window, i.e.,
[-2, +1].

True: tornadoes, hail, or
wind gusts

False: non-severe
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Methods: roadmap

Step1: deep generative models are applied to create “synthetic ensembles” form
deterministic HRRR forecasts.

e Generate: CREF, all environmental predictors
e Conditional inputs: UH, APCP, Graupel mass, 10-m SPD
e Let conditional inputs influence the generated fields to secure the output quality

Step2: CNN-based prediction model is used to produce severe weather
probabilities on each synthetic member independently.

_ i Synthetic ensembles
: | HRRR :
HRRR 3-km forecasts : inputs
: N : : Severe weather
: : O ! probabilities
Environmental predictors / Deep generative _»_ éSyntheticg H CNN.-based _»_
; CREF : models : o inputs G| : prediction model : :
. |Storm-scale explicit predictors| : el : ’ : :
fEandionElnpats) 5 Geographical inputs




Conditional Generative Adversarial Network (CGAN)

Two CGANSs are prepared, one for [CREF, CAPE, and CIN], the other one for
[Other environmental predictors].

CGAN = Generator v.s. Discriminator (both are CNNs)

Training procedures (200 epochs + training loss stabilizes ).

1. Generator produce outputs to update the discriminator
2. Discriminator computes its loss function to update the generator
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CNN-based severe weather prediction model

General design: decoupled representation learning and classification

e Representation learning: 2-d CNN + global max pooling — feature vector
e Classification: feature vec x4 — 1-d CNN + global max pooling — dense
layer + Monte-Carlo (MC) dropout — Output

Benefits:

e Handle long-tailed data better
e Save computation (avoid the use of 3-d convolution kernels; faster training)

Feature vector (128, 1)

64-by-64 sged inputs . 2-d CNN _~‘ k. SP.C. report as
15 predictors ‘... training target

‘.
",

Severe weather

Collect feature vectors in > Classification _»O robability on forecast
four forecast lead times: [t-2, t-1, t, t+1] model P y .
lead time t
t2t1 t t+1 f

Geographical inputs




Methods: the post-processing experiment

Training: HRRR v3 v4, and SPC reports from 2018/07/15 to 2020/12/31
Validation: 10% random-split from the training set.

Verification: HRRR v4 and SPC reports from 2021/01/01 to 2021/12/31

CGAN ensemble (ours): 50 members based on CGAN outputs and MC dropout

CNN ensemble: 50 members based on the same CNN prediction model as “ours”,
but with MC dropout only, and without using CGANs

MLP ensemble: 50 members based on Multilayer Perceptrons (MLP) and MC
dropout.



Result: examples of CGAN outputs

2-5 km UH
(one of the conditional inputs)
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The starting point of CREF
HRRR CREF generation

CGAN




Result: examples of CGAN outputs

(a, b) HRRR 2-5 km UH and CREF on 02Z, 1 June 2021
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Result: examples of CGAN outputs
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Result: Brier Skill Scores (BSSs)

(a) Brier Skill Scores (BSS)[*1 of CGAN ensemble, CNN ensemble, and MLP ensemble. 2021-2022
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e Late night - early morning: all methods performed poorly.
o HRRR forecasts are less skilful in these hours.
o Fewer severe weather reports are available in these hours for training.

e Daytime hours: ours are clearly better than the two baselines.



Result: the spatial distribution of BSS

Brier Skill scores (BSS)[*] and differences computed for each output domain grid cell, 2020-2021
(a) CGAN ensemble (b) CNN ensemble (c) MLP ensemble

(d) CGAN ensemble minus (e) CGAN ensemble minus )
CNN ensemble MLP ensemble BSS[* in (a-c)

0.05 0.10 0.15 0.20

BSS*] differences in (d) and (e)
-0.06 -0.03 0 0.03 0.06

Number of severe weather

reports lower than 150.

[*] BSS is calculated relative to
the hourly climatology of
1986-2015 SPC reports.




Result: the spatial distribution of BSS

Brier Skill scores (BSS)[*] and differences computed for each output domain grid cell, 2020-2021
(a) CGAN ensemble (b) CNN ensemble (c) MLP ensemble

......

(d) C%\l ensemble minus (e) CGAN ensemble minus

CNN ensemble MLP ensemble BSS[* in (a-c)

0.05 0.10 0.15 0.20

BSS*] differences in (d) and (e)
-0.06 -0.03 0 0.03 0.06

Number of severe weather

reports lower than 150.

[*] BSS is calculated relative to
the hourly climatology of
1986-2015 SPC reports.

Good performance: e Predictors like UH are useful for severe weather events in
e Great Plain the Great Plain
e Northeastern US e Plenty severe weather cases to learn from the training data



Result: the spatial distribution of BSS

Brier Skill scores (BSS)[*] and differences computed for each output domain grid cell, 2020-2021
(a) CGAN ensemble (b) CNN ensemble (c) MLP ensemble

(d) CGAN ensemble minus (e) CGAN ensemble minus )
CNN ensemble MLP ensemble BSS[* in (a-c)

0.05 0.10 0.15 0.20

BSS*] differences in (d) and (e)
-0.06 -0.03 0 0.03 0.06

Number of severe weather

reports lower than 150.

[*] BSS is calculated relative to
the hourly climatology of
1986-2015 SPC reports.

Bad performance: Reason:
e Some bordering areas e (Coastal environment; monsoon thunderstorms
e Southern Arizona e Positional errors



Result: The impact of HRRR positional errors

Example outputs of 16-21Z forecasts on 24 August 2021
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Result: successful predictions by severe weather categories

(f) The top 11.45% most successfully predicted severe weather cases**] for each method and by categories

Tornadoes Tornadoes & Tornadoes, wind Wind gusts Wind gusts Hisil i
only wind gusts gusts & hail only & hail Y
Total number 1510 711 126 15461 2311 5435
of cases
CGAN 100 252 35 1927 333 279
en. mean (6.623%) (35.443%) (27.778%) (12.464%) (14.409%) (5.133%)
CNN 114 235 32 1943 320 277
en. mean (7.550%) (33.052%) (25.397%) (12.567%) (13.847%) (5.097%)
MLP 106 231 23 1986 306 269
en. mean (7.020%) (32.489%) (18.254%) (12.845%) (13.241%) (4.949%)

[**] We selected the top 15% most successful "true positive" predictions for each method and each forecast lead time
based on Brier score rankings, and excluded predictions with prob < 0.45



Result: successful predictions by severe weather categories

(f) The top 11.45% most successfully predicted severe weather cases**] for each method and by categories
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Bad performance:
e TJornadoes only
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Good performance:
e Tornadoes and wind gusts



Conclusions

A post-processing method was developed by integrating Conditional
Generative Adversarial Networks (CGANs) and a Convolutional Neural
Network (CNN) classifier to generate probabilistic forecasts for severe weather
events using HRRR forecasts.

The CGANs were trained to produce synthetic ensemble members based on
the deterministic HRRR forecasts, while the CNN classifier utilized the outputs
from the CGANSs to generate forecasts of severe weather probabilities.

The method is successful, it is overall more skillful than the MLP and CNN
baselines, and it has achieved 0.2 BSS for short forecast lead times.

The method performed well in the Great Plains and the Northeast CONUS. It is
especially successful in predicting severe weather events that combine
tornadoes and wind gusts.
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(a) The training procedure of CGAN
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(a) Technical steps of the end-to-end severe weather prediction model (CGAN and CNN-MC)
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(b) The architecture of 2-d CNN in (a)
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(d) The architecture of MLP-based severe weather prediction model (MLP-MC) 3]
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[2] The Monte Carlo dropout in (c) applies to CNN-MC only.
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Reliability diagrams[*] of ensemble mean prediction, 2021-2022

1.0

(a) 00-06Z L. 52 (b)|12-182 2 L, (c) 18-247 7
L>)‘ \ /| ,, //,, /,/
S 0.75 0=4.065x% 1073 LY 0=0.989 x 1473 / 0=6.306 x 1073 o
: . " 7/ ,/
g s T ) /, —
£ y A” /
g A .l / P
£ 05 7 1 A ) . F
@ l/’/ 4 Lo g - TS e %
= 7 ’,"’ ’;,/ i ,// *’ i
g IE P L1\
v 0.25 /} $ee / P
_8 3’/ ”’/ Z ’,”
o ¥*o - g - i
& o
0 e "2 =
e 0 0.25 0.5 0.75 1.0 0.75 0 0.25 0.5 0.75 1.0
E) 2 \s N\ \‘
£ 10° . ’
8 “.éa* \ '(‘$¢
(W) - ) <> \
o B S¥= \‘e :’.:5.:::‘" <.
%5 1074 R S !: < g Rt “T
> \’\\ \\*~?~"$ N \\N.\\
@) "o L e --0 ° . e
= “ ] e ~o e
o 10°° - oy b4 o
=2 Forecast Probability Forecast Probability Forecast Probability
9]
- 0 0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 0 0.25 0.5 0.75 1.0
Brier REL RES Brier REL RES Brier REL RES
. 3.290 0.005 0.764 0.933 0.003 0.059 3.469 0.009 0.494
(107°) 3.385 0.006 0.669 0.935 0.001 0.055 3.549 0.007 0.412
3.406 0.019 0.663 0.940 0.001 0.049 3.596 0.016 0.375

Calibration curvel*1:

= = CGAN ensemble mean == CNN-MC ensemble mean
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= MLP-MC ensemble mean
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[*]1 Reliability diagrams and Brier score components are computed relative to the hourly climatology of 1986-2015 SPC reports.
[**¥] Calibration curves are averaged over 100 bootstrap replicates. Error bars represent the 95% confidence intervals.



Result: uncertainty quantification
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Result: CGAN output v.s. HRRR (feature importance)
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-[ (a) CNN-based permutation feature importance measured by Brier Score increase, 00-04Z forecasts, 2021-2022
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