Evaluating Horizontal and Vertical Fluxes in the Hubbard Brook Experimental Forest Jacqueline Kiszka¹, Alyssa Shih², Eric Kelsey³

HOBART AND WILLIAM SMITH

Plymouth State

NSF REU

1. Motivation

- How forests' use of water, energy, and carbon dioxide changes in a rapidly changing climate has profound implications for the global climate.
- To advance knowledge of how a forest uses these resources, it is critical to understand wind patterns above and below the forest canopy.
- Turbulence can create a coupled wind regime that moves resources through the canopy, though horizontal flows below canopy can also produce significant fluxes of resources.
- This research evaluates the energy budget and quantifies the horizontal fluxes of carbon dioxide and water vapor.

2. Introduction

- The Hubbard Brook Experimental Forest (HBEF) in North Woodstock, New Hampshire, USA on Abenaki land
- 35 km² or 8,700 acres
- Temperate mixed deciduous and conifer forest, with heterogeneous canopy
- 20-m canopy with sparse undergrowth

Figure 1. Map of the HBEF in NH. Eddy located at green star on US regional map.

3. Methodology

- Above- and below-canopy measurements taken at the top of a 30-m eddy covariance tower and at 6 m AGL
- Instrumentation includes a 3-D sonic anemometer and LI-COR gas analyzer (H₂O, CO₂) and 10 Hz measurements were averaged into 30 min intervals
- Dataset spans 25 May 16 June 2022 and 18 May June 9 2023
- The friction velocity (u*) coupling metric^{1,2} was employed:

 $u^* = \sqrt[n]{u'w'}^2 + \overline{v'w'}^2$

Figure 2. The above-canopy instrumentation on the eddy covariance tower in the HBEF.

• The energy budget refers to the accounting of solar energy after it is redistributed in the forest ecosystem via the components of R_{net} (Net Radiation), H (Sensible Heat Flux), LE (Latent Heat Flux), and G (Ground Heat Flux)

$$R_{not} = H + LE + G$$

References & Acknowledgements

Support for this project provided by the National Science Foundation REU program AGS-1757009. Data processing was done by Mark Green & Dan Evans. Paul-Limoges, E., Wolf, S., Eugster, W., Hörtnagl, L., & Buchmann, N. (2017). Below-canopy contributions to ecosystem CO2 fluxes in a temperate mixed forest in ²Thomas, C. K., Martin, J. G., Law, B. E., & Davis, K. (2013). Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: Multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. *Agricultural and Forest Meteorology, 173,* 14-27.

Any questions or comments can be directed to jmk7074@psu.edu

Northeast Partnership for Atmospheric & Related Sciences REU Pennsylvania State University¹, University of Illinois Urbana-Champaign², Plymouth State University³

4a. Results: Coupling Thresholds

covariance tower located at pink star and HBEF

and 2023 were x correction method and Thomas et al. added to

Coupling in the HBEF:

Figure 3. The nighttime friction velocity (u*) for 2022 and 202 using binned averages and standard deviation bars for above-canopy u*. The dashed lines indicate the nighttime u* thresholds for for both years, determined from the inflection points of the slopes. Note the logarithmic scale for both axes.

4b. Results: Energy Budget Closure

Figure 4. The energy budget for 2022 and 2023 based on a) the above-canopy measurements for latent and sensible heat fluxes (LE and H) and b) the decoupled flux correction, which adds the below-canopy LE and H to the above-canopy measurements.

- The 2022 portion of the dataset shows a higher budget closure of 67% for the uncorrected model (Fig. 4a) while the 2023 portion shows higher closure of 72% for the decoupling correction model (Fig. 4b)
- The 4% increase in budget closure in 2023 with the flux correction model accounts for ~6.8 W/m²
- This suggests that 2022 was more coupled than 2023 and above-canopy measurements accurately detected below-canopy fluxes
- A decoupled correction model based on u* thresholds for 2023 (not shown) did not close the energy budget as effectively as the fully-corrected model
- The 2023 correction (Fig. 4b) supports the findings of Paul-Limoges et al. (2017) of frequent decoupling in the summer
- More data points will help to increase the confidence in these findings

• A lower u* threshold for 2022 (Fig. 3) means that less turbulence was required for the air masses to be considered coupled

- This threshold difference might be linked to a difference in canopy density between the years of the dataset

4c. Results: Horizontal Advection

Figure 5. The average CO₂ flux by hour above- and below-canopy for 2022 and 2023. The red dashed lines indicate day and nighttime.

difference is larger for 2023 (Table 1)

Figure 6. The average LE flux by hour above- and below-canopy for 2022 and 2023. The red dashed lines indicate day and nighttime.

- the flux difference is larger for 2023 (Table 1)
- than 2022 in the overnight hours

Table 1. The integrated overnight (1900 - 0500 EST) flux differences for CO₂ and LE for 2022 and 2023, using above-canopy minus below-canopy.

5. Conclusions & Future Work

- Overnight below-canopy horizontal fluxes export CO₂ and import H₂O via katabatic (mountain) flow

• During the overnight hours, differences in above- and below-canopy CO₂ flux (Fig. 5) are associated with CO₂ being lost via horizontal advection, and the flux

• During the overnight hours, differences in above- and below-canopy LE flux (Fig. 6) are associated with water vapor being gained via horizontal advection, and

• This implies that there was more horizontal advection and decoupling in 2023

• Horizontal advection likely also occurs during the day, but it is more difficult to quantify since biological processes also contribute to the fluxes

2022	2023
-1.66 mol/m ²	-2.54 mol/m ²
0.055 mm/m ²	0.081 mm/m ²

• 2022 was likely more frequently coupled than 2023 from a lower u* threshold, higher energy budget closure, and less overnight horizontal advection

• Further investigation with more data is needed to examine seasonal and larger-scale temporal variability in wind and flux patterns