

Radiometric Uncertainty Analysis of the CHISI Instrument for a Constellation of LEO Infrared Sounding Satellites ASHLEY RAYNAL^a, JOSEPH PREDINA^b, RICHARD HERTEL^b, CORDELIA DAVID^a, JOHN FISHER^a

Introduction

- CHISI (Compact Hyperspectral Infrared Sounding Interferometer) is a field-widened hyperspectral imager. When deployed in a constellation of ~24 satellites, it enables generation of atmospheric temperature & moisture profiles with global updates <1 hour.
- Low radiometric uncertainty (RU) allows measurements from the constellation to be treated as if coming from a single instrument.
- Specification: RU <0.15% of 287 K blackbody radiance; places RU</p> below the instrument noise floor.
- 2-point calibration via hot & cold Internal Calibration Target (ICT).
- ICT prototyped and RU modeled to determine feasibility.

Dual-Temperature Calibration Target (Optical cavity baffle not shown)

Clear Aperture Position

Prototype Assembly

Calibration Position

Thermal Vacuum Testing

High-\varepsilon Carbon Nanotube Coating

Coated Puck

Resistive Heater

Affiliations: (a) Brandywine Photonics, (b) Logistikos Engineering.

