A History of Volcanic Ash Forecasting at NOAA Air Resources Laboratory

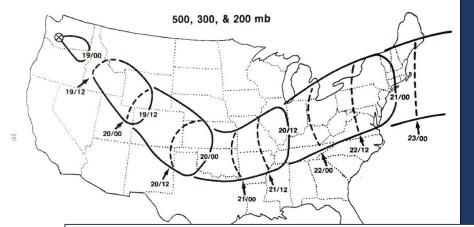
by

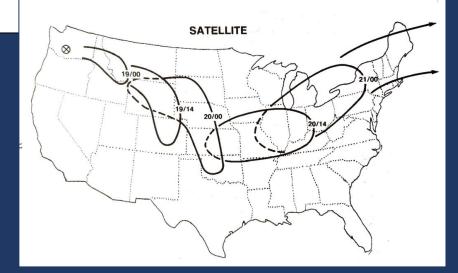
Barbara Stunder, Ret., NOAA Air Resources Laboratory, College Park, MD; and A. M. Crawford, T. Chai, B. Wang, A. M. Ring, C. P. Loughner, H. Kim, S. Zinn, M. D. Cohen, J. Heffter, and R. Draxler

alice.crawford@noaa.gov

Session 9A - Linking Earth and Sky: 75 Years of Weather and Climate Research in the NOAA Air Resources Laboratory – History 12th Symposium on the Weather, Water, and Climate Enterprise 104th AMS Annual Meeting, 28 January–1 February 2024, Baltimore Maryland

> Image: Redoubt on Dec. 18, 1989. (W.M. White/Alaska Volcano Observatory) https://www.ktoo.org/2020/12/15/on-this-day-in-1989-redoubt-eruption-triggered-seismic-shift-in-alaska-volcano-research


Mt. St. Helens volcano, Washington state – May 18, 1980


ARL forecast trajectories, text only, on NMC (now NCEP*) computer and faxed

NOAA/FAA Memo. of Understanding (MOU)

May 19-23, 1980. Top: Composite upper tropospheric trajectories (200, 300, 500 mb). Bottom: Ash cloud position from NOAA satellite imagery. (Draxler, 1981: Observing and forecasting motions of volcanic emissions shortly after the initial Mt. St. Helens eruptions. NOAA Tech Memo ERL ARL-95)

*NWS National Centers for Environmental Prediction

1980s - 1990

Galunggung volcano, Indonesia – June 24, 1982 -- BA 009

→ ICAO* International Airways Volcano Watch

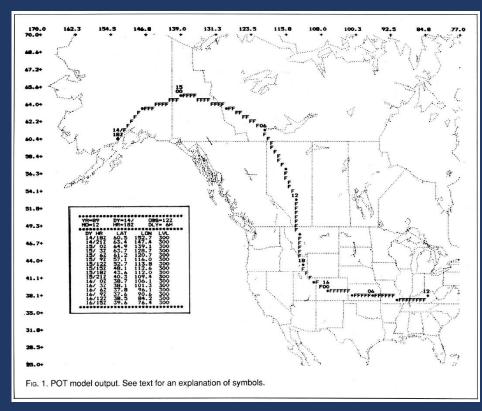
Redoubt volcano, Alaska – December, 1989 – June, 1990 December 15 -- KLM 867

Pilot: Climbing to level 390, we're in a black cloud, heading 130.Pilot: KLM 867 we have flame out all engines ...Pilot: KLM 867 heavy, we are descending now: we are in a fall!

• • •

*International Civil Aviation Organization

Late 1980s / Early 1990s


Dot-matrix printer graphics

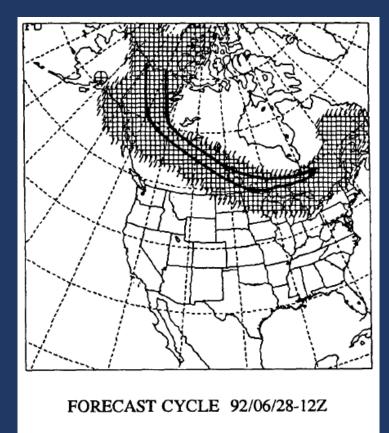
NWP global output on pressure levels, 381 km, 6-hourly

"Silent 700" computer terminal

ARL develops volcanic ash forecast guidance to support safe flight.

Heffter, J.L., et al., 1990: Long-range forecast trajectories of volcanic ash from Redoubt volcano eruptions. Bull. Amer. Meteor. Soc. 71(12):1731-1738.

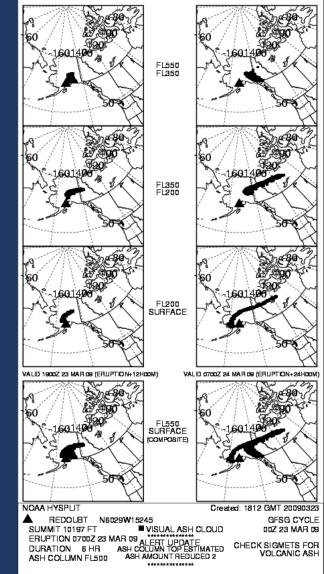
Late 1980s / Early 1990s


ARL developed VAFTAD – Volcanic Ash Forecast Transport And Dispersion model

Qualitative output – ash or no ash

Verification with hardcopy satellite imagery (solid line on figure)

"arlrisc" workstation – pseudo-operational


VALID 92/06/30-03Z TO 92/06/30-15Z

Heffter and Stunder, 1993: Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather and Forecasting 8(4):533-541.

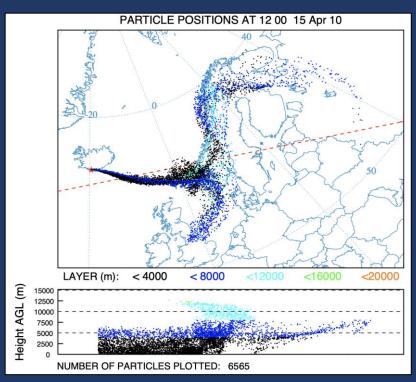
VAFTAD transferred to NWS/NCEP Operations (R2O – Research-to-Operations)

ICAO – "VAFTAD-format graphic"
 avoid ash

OFCM (now ICAMS*) Volcanic Ash Working Group National Plan

*Interagency Council for Advancing Meteorological Services

NCEP volcanic ash modeling - HYSPLIT instead of VAFTAD

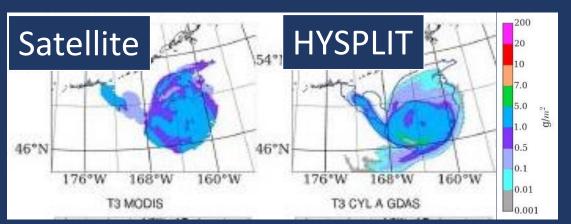

- VAFTAD look-alike graphic from HYSPLIT (NWS product)
- avoid ash
- US Geological Survey (USGS) Eruption Source Parameters* relation between eruption height and volume erupted ash H = 2.00 v ^{0.241}
 - v="dense rock equivalent" (m³/s) but need "fine ash" H=plume height (km)

*Mastin, L.G., et al., 2009: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, Journal of Volcanology and Geothermal Research, 186:10-21.

Eyjafjallajökull

- ICAO: risk assessment instead of ash avoidance
- "Quickly" increased NCEP capability
 - Time-varying source
 - Modify particle size distribution
 - Horizontally translate ash footprint

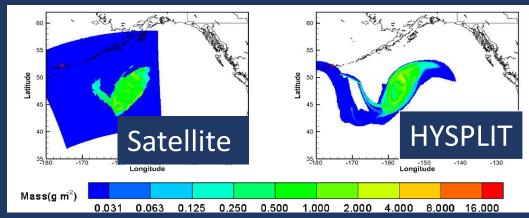
HYSPLIT Eyjafjallajökull snapshot. HYSPLIT tutorial file xamp16.png


https://www.ready.noaa.gov/documents/Tutorial/html/index.html

2010s FAA funding

FAA funding for ARL

 research into improving source terms for quantitative forecasts (mass loading) using satellite data


Crawford et al., 2016 (from Fig. 2) Source – Cylindrical shape

Crawford, A. M., et al., 2016: Initializing HYSPLIT with satellite observations of volcanic ash: A case study of the 2008 Kasatochi eruption, J. Geophys. Res.Atmos.,121, 10,786–10,803, doi:10.1002/2016JD024779.

Kasatochi, Alaska, 2008

Chai et al., 2017 (from Fig. 5) Source from inverse modeling, (different time period)

Chai, T., et al., 2017: Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals, Atmos. Chem. Phys., 17, 2865–2879, https://doi.org/10.5194/acp-17-2865-2017.

9

ARL web early 2020s -

Posted on ARL web page
 Automatically-run HYPSLIT
 dispersion and trajectories upon
 receipt of satellite retrievals of ash
 or a hot spot

L Home	> READY	> Transport & Dispersion Modeling	> Volcanic Ash	> Run the HYSPLIT Volcanic Ash Model	> Forecast Volcanic Ash

Volcanic Ash

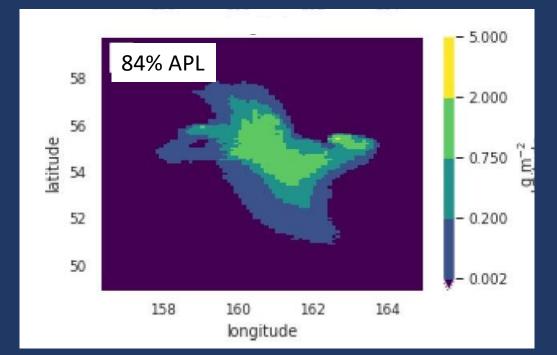
HYSPLIT trajectory and dispersion runs are generated in response to alerts produced by the volcanic cloud monitoring system (VOLCAT) Choose a volcano: Most recent

VOLCAT Alerts and corresponding HYSPLIT trajectory and dispersion runs for the last 48 hours

Trajectory and dispersion runs are generated when an alert is received

		Date and Time (UTC):	Alert Type	Location (lat, lon)	Nearby Volcanoes	VAAC Region	HYSPLIT Trajectories	HYSPLIT Dispersion
-	Alert 0	12/08/2023 at 14:18 UTC	hot	56.63, 161.31	Sheveluch	Tokyo	• <u>png</u>	
	Alert 1	12/08/2023 at 14:13 UTC	hot	14.74, -91.58	Santa Maria Santo Tomas Almolonga Toliman Atitlan	Washington	• <u>png</u>	
	Alert 2	12/08/2023 at 14:06 UTC	ash	-15.78, -71.85	Sabancaya Huambo Nicholson, Cerro Chachani, Nevado Andahua-Orcopampa	Buenos Aires	• <u>png</u>	 <u>3hrs</u> <u>6hrs</u>
	Alert 3	12/08/2023 at 13:48 UTC	hot	-19.53, 169.45	Yasur	Wellington	• <u>png</u>	

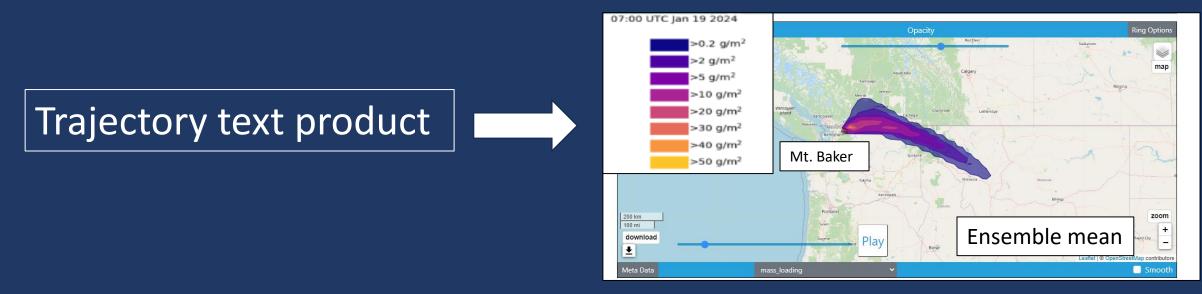
https://www.ready.noaa.gov/hysplitash-bin/autoash.py


- ARL web is ahead of what is at NCEP; Implementation at NCEP takes time
 - Need requirements, coordinate products, testing, approvals, etc.

Through the present NOAA Research funding – NCEP Global Ensemble Forecasts • Products, verification, bias correction (Crawford et al., 2022)

Leads to new workflow plan

- ingest satellite retrievals
- inverse modeling
- probabilistic products
- probabilistic verification


84% of ensemble members have mass loading < given value

Crawford, A., et al., 2022: Evaluation and Bias Correction of Probabilistic Volcanic Ash Forecasts, Atmos. Chem. Phys., https://doi.org/10.5194/acp-22-13967-2022.

APL = Applied Percentile Level

Conclusion ARL developed/s VA forecast guidance to support safe flight.

- ARL-developed trajectory/dispersion models
- NCEP meteorology models
- Satellite data/analyses
- Pseudo-operations at ARL NCEP operations (R2O)
- Bureaucracy requirements and funding