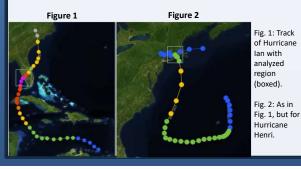


Analyzing the Performance of Different Parameter Settings with the Ensemble Nowcasting of Tropical Cyclone Precipitation

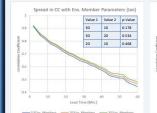
Steven Rearden¹, Steven Martinaitis², Jackson Anthony², and Dean Meyer²

¹National Weather Center Research Experiences for Undergraduates Program, Norman, Oklahoma; ²OU/CIWRO & NOAA/NSSL, Norman, Oklahoma

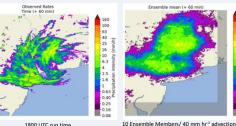

Introduction

- One of the deadliest hazards associated with landfalling tropical cyclones is flash flooding.
- The stagnation of progress in extending flash flood warning lead times over the past decade, remains a concern in the effort to protect life and property.
- To address this problem, this research tests a precipitation nowcasting scheme using MRMS precipitation data for two tropical cyclone case studies.

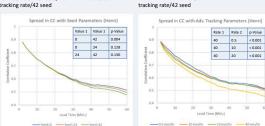
Methodology


- Hurricane Ian (2022) and Henri (2021) were selected as case studies.
- The Short-Term Ensemble Prediction System (STEPS) produced the nowcasts with the input MRMS data.
- A variety of case parameter value combinations produced unique performance statistics revealing which values produce the most accurate nowcasts.

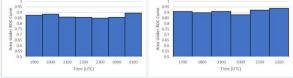
Case Parameter	Values Tested			
Advection Tracking Rate	0.5 mm hr ⁻¹	10 mm hr ⁻¹	20 mm hr ⁻¹	40 mm hr ⁻¹
Ensemble Members	10	20	30	
Seed Value	0	24	42	



Results from Ian Case Study


Results from Henri Case Study

Rate 1 Rate 2 p-Value


10

< 0.001

< 0.001

0.004

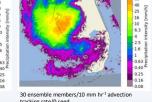
Hourly Run-to-Run Consistency Average Area Under ROC Curve per Run Tim Average Area Under ROC Curve per Run Tim

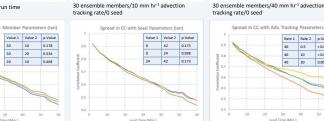
Results from Ian (left) and Henri (right) indicate a high level of consistency in nowcast performance between run times.

Main Takeaways from Case Study Results

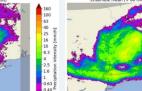
- Changes in advection tracking thresholds produced the greatest differences in nowcast performance.
- The most ideal advection tracking threshold differed for the two case studies. This is likely due to the widely varying precipitation field characteristics between them.
- The number of ensemble members and seed value were less critical, with small spreads in performance with changes in these values.
- Overall, a high potential for usefulness in flash flood warning prediction exists with this nowcasting scheme, but more testing is required.

Future Work


 Further case and parameter testing, including resolution and velocity perturbations, have been performed since this study (Martinaitis, Wednesday at 8:45 AM).


References

Martinaitis, S. M., and Coauthors, 2023: A path toward short-term probabilistic flash flood prediction. Bull. Amer. Meteor. Soc., 104, E585-E605, https://doi.org/10.1175/BAMS-D-22-0026.1


2Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: new data and interpretation. Bull. Amer. Meteor. Soc., 95, 341–346, https://doi.org/10.1175/BAMS-D-12-00074.1

