The Conditional Relationship Between Atmospheric River Moisture, Wind, and Precipitation in Satellite Observations

Emilio Yanez¹, Weiming Ma^{1,2}, Gang Chen¹ ¹Department of Atmospheric & Oceanic Sciences, UCLA, Los Angeles, CA; Now at: ²Pacific Northwest National Laboratory, Richland, WA

UCLA College | Physical Sciences Atmospheric & **Oceanic Sciences**

American Meteorological Society

Motivations

- Atmospheric Rivers (ARs) are elongated and narrow filaments of water vapor transport in the atmosphere with convergence often associated with heavy precipitation events
- Previous work on AR "flavors" mainly on the regional scale, but not global (Gonzales et al., 2017)
- There is a gap in an understanding of the relationships between AR moisture, wind, integrated vapor transport (IVT), and precipitation

Ralph et al. 2017

We analyze the AR moisture, wind, IVT-precipitation relationship by...

Data & Methodology

- **Satellite-based** data over 2002–2016 case study period
 - □ Version 6 of the AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-AMSU) at a spatial resolution of 1.0° x 1.0° (Teixeira et al., 2013)
 - Version 6 the GPM IMERG Final Precipitation L3 1 Day (IMERG) at a spatial resolution of 0.1° x 0.1° (Huffman et al., 2019)
- AR detection algorithm based on original **IVT-threshold** (Guan & Waliser, 2015) and modified to **GIVT-threshold** developed for satellite data (Ma et al., 2023)
- AR geometry (shape), AR centroids, integrated water vapor (IWV), integrated vapor transport (IVT), geostrophic wind, and precipitation on **daily temporal scale**
- Binned scatter divides the independent variable (x) into equally sized bins and find the conditional mean of the dependent variable (y) within each bin (Cattaneo et al., 2021; Peters & Neelin, 2006)
- **Precipitation threshold of** \geq 0.01 mm/day to remove non-precipitating ARs
- Grid point **linear regression** using regular statistics (*R*, *R*², 95% confidence intervals)

AR Types on a Global Scale

Can expand notion of AR "flavors" globally using simple percentiles

Frequency of Wet and Windy ARs

Visualizing AR Relationships

E.g. NH MJJAS AR IVT-Precipitation

Satellite–Derived Conditional Relationships

E.g., Conditional Means of AR Precipitation, NH NDJFM ARs (2002 – 2016)

□ With increasing moisture and wind values, AR precipitation also increases (varying sensitivities and small nonlinear deviations)

The AR IVT–Precipitation Relationship

Conditional Means of AR Precipitation (2002 – 2016)

= Cool Season = Warm Season

- IVT gets contributions from moisture and wind
 - Strong, overall linear **conditional relationship:** with increasing IVT, AR precipitation also increases
- Both seasons and hemispheres have similar results

Next Steps

Methodology **Results**

Conditional Relationships by AR Type

E.g., Conditional Means of AR Precipitation, NH NDJFM ARs (2002 – 2016)

- Varying sensitivities and small nonlinear deviations can be explained by AR type
- Wet ARs highly sensitive to changes in wind
- □ Windy ARs highly sensitive to changes in moisture

The IVT–Precipitation Relationship by AR Type

Conditional Means of AR Precipitation (2002 – 2016)

= Cool Season

= Warm Season

No significant change in dependency (slope) on IVT between AR types
Wet ARs may produce more precipitation than Windy ARs

Key Takeaways

- Wet (Windy) ARs have a higher frequency near tropics (poles)
- Strong, positive conditional AR IVT-precipitation relationship, regardless of ocean basin and season
- Nonlinearities in moisture and wind relationships associated with AR types
- Only small AR type dependence for IVT-precipitation

Future Work

- Perform conditional mean analysis by individual grid points
- Incomporate reanalysis and climate model data to evaluate biases in the AR IVT-precipitation relationship (expansion of Ma et al., 2023)
- Explore how AR precipitation sensitivities change under global warming

AR "Drizzling" bias in reanalyses

References

Cattaneo, M. D., Crump, R. K., Farrell, M. H., Feng, Y. (2021). On Binscatter. arXiv Economics.

Gonzales, K. R., Swain, D. L., Barnes, E. A., & Diffenbaugh, N. S. (2020). Moisture- versus wind-dominated flavors of atmospheric rivers. Geophysical Research Letters, 47, e2020GL090042.

Guan, B., & Waliser, D. E. (2015). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120(24), 12514–12535.

Guan, B., Waliser, D. E., & Ralph, F. M. (2023). Global application of the atmospheric river scale. Journal of Geophysical Research: Atmospheres, 128, e2022JD037180.

Ma, W., Chen, G., Guan, B., Shields, C. A., Tian, B., & Yanez, E. (2023). Evaluating the representations of atmospheric rivers and their associated precipitation in reanalyses with satellite observations. Journal of Geophysical Research: Atmospheres, 128, e2023JD038937.

Peters, O., Neelin, J. (2006). Critical phenomena in atmospheric precipitation. *Nature Phys* 2, 393–396.

Acknowledgements: Bin Guan & Sudip Chakraborty

Email: emilioy33@g.ucla.edu.

LinkedIn: www.linkedin.com/in/emilio-yanez-3124531b0

Extra: Preliminary Linear Regression (Each Point)

3b. Linear Regression

Grip Point (Lat: 44.5, Lon: -141.5) Pacific Ocean AR IVT vs AR Precip

Future Work: Conditional means first and only then use linear regression Stay tuned!

Next Steps

Background > Methodology > Results >

Extra: Grid Point Linear Regression

Precipitation Sensitivities (slope values) for each Grid Point

- (a) Less moisture near poles \rightarrow higher sensitivity to IWV (moisture)
- (b) Less windy near tropics \rightarrow higher sensitivity to wind

Extra: Grid Point Linear Regression

Precipitation Sensitivities (slope values) for each Grid Point

(c) Mix of both, convergence over topography \rightarrow higher sensitivity to IVT