



# **Projections of Summertime Hot and Dry Compound Extremes in North America Using SPEAR Large Ensemble Simulations**

# Introduction

- Hot-dry compound extremes (HDCEs): co-occurrence of hot and dry extremes
- Hazards are more impactful in combination; univariate approaches underestimate impact
- More frequent extremes, including HDCEs, with a warming climate, in global trends & projections

#### Focus of study on summer months in North America:

- How do the characteristics of HDCEs (frequency, duration, intensity) vary by month?
- What are their future projected changes?



Fig. 1. Time series of ratio of global compound hot-dry extremes to all heat waves (Mukherjee and Mishra 2021)



Fig. 2. Change in % of seasons with HDCEs in 2050-2099 vs 1950-1999 (Wu et al. 2020)

# Methods and Data

### Variables

- Months: June, July, August (JJA)
- Daily resolution max 2-m temperature (T2m)
- Monthly resolution total precipitation

**Reanalysis: ERA-5**, JJA 1980-2014

Model: GFDL SPEAR-MED (SPEAR) 30 members, 0.5° x 0.5° Historical: JJA 1980-2014 Mid-century: JJA 2030-2064 Late-century: JJA 2065-2099 RCP 8.5 projections

**HDCE definition**. Define a *HDCE day* if, for that month:

- max daily T2m > 90th percentile T2m
- total precip < 10th percentile precip

**Frequency**: % of all days meeting HDCE criteria **Duration**: average length of HDCE events **Intensity**: average index per HDCE day (defined below)

| Monthly precip ranking (percentile) | Daily max temp percentile relative to month |                |                |                |                |                |                |                |                |                |
|-------------------------------------|---------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                                     | <u>&gt;</u> 90                              | <u>&gt;</u> 91 | <u>&gt;</u> 92 | <u>&gt;</u> 93 | <u>&gt;</u> 94 | <u>&gt;</u> 95 | <u>&gt;</u> 96 | <u>&gt;</u> 97 | <u>&gt;</u> 98 | <u>&gt;</u> 99 |
| 4th driest (10)                     | 1                                           | 1.1            | 1.2            | 1.3            | 1.4            | 1.5            | 1.6            | 1.7            | 1.8            | 1.9            |
| 3rd driest (7.1)                    | 1.29                                        | 1.419          | 1.548          | 1.677          | 1.806          | 1.935          | 2.064          | 2.193          | 2.322          | 2.451          |
| 2nd driest (4.3)                    | 1.57                                        | 1.727          | 1.884          | 2.041          | 2.198          | 2.355          | 2.512          | 2.669          | 2.826          | 2.983          |
| Driest (1.4)                        | 1.86                                        | 2.046          | 2.232          | 2.418          | 2.604          | 2.79           | 2.976          | 3.162          | 3.348          | 3.534          |

Jonathan Lee<sup>1,2</sup>, Liwei Jia<sup>1</sup>, Colleen McHugh<sup>1</sup>, Thomas L. Delworth<sup>1</sup> Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, <sup>2</sup> Dept. of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY



Fig. 3. Reanalyzed and modeled climatologies of HDCE characteristics for JJA 1980-2014.

**Projections: mid vs. late century** 





- SPEAR reasonably simulates spatial pattern + magnitude of the climatology of HDCE events (Fig. 3)
- Accelerated increases in HDCE frequency, duration, and intensity are projected in late-century relative to mid-century in RCP 8.5 runs (Fig. 4)
- HDCE characteristics are more pronounced later in the summer compared to June (Fig. 5)
- the greatest projected increase in HDCE frequency (Fig. 4, 5) • Greatest duration increases in *Alaska*, much of the *southern US*, plus above areas (Fig. 4, 5)
- Several-fold frequency, duration increases possible in parts of eastern US Intensity increases are relatively uniform Ο
- Future directions: analyze projections across more emissions scenarios/ precip. metrics, compare with preindustrial control, conduct significance tests • Investigate changes in the dependence between extreme heat and drought; assess mechanisms/roles of each factor behind projected increases

Fig. 4. Projections of HDCE characteristics for JJA 2030-2064, 2065-2099. Multipliers are relative to modeled climatologies (1980-2014).



## **Conclusions and Future Research**

• Pacific Northwest, west-central Canada, and south-central US and Mexico have