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Background: Storm Surge

A refrigerator deposited in a tree by 
Hurricane Katrina’s record storm surge 

in 2005 
(Fritz et al., 2007)

Storm surge is caused by a tropical 
cyclone’s wind pushing water onto land

(NHC, no date)
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Modeling     
Capabilities

Human 
Populations and 

Behavior

Hurricane 
Risks

• Storm surge is historically 
the largest single cause of 
death from tropical 
cyclones the United State 
(Rappaport 2014)

• The historical record is too 
short to gain an accurate 
understanding of current 
risk

• Future changes in tropical 
cyclone climatology further 
complicate our 
understanding

• A number of statistical and 
dynamical models exist for 
modeling storm surge 
(ADCIRC, ROMS, SLOSH, 
etc.)

• These models rely on 
increasing spatial and 
temporal resolution for 
accuracy, at the detriment 
of computational efficiency

• We want to explore the 
feasibility of ML/AI 
approaches to this problem

• Coastal populations have been increasing 
historically, and are projected to continue 
increasing globally (Neumann, 2015)

Motivations
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Our Approach: DeepSurge

Wind fields, bathymetry 
maps, coastal geometry, 

storm position and motion

Predicted peak 
storm surge 

levels

Custom deep neural network

Woodruff et al. (2013) hypothesize that storm surge height is proportional to

moderated by more complex interactions with coastal features such as bays, inlets, and barrier 
islands
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DeepSurge: Network Architecture

First, we gather a number of different inputs that describe the physical features which 
influence surge: constant spatial maps representing coastlines and bathymetry, and time-
varying features such as storm location, wind speed, and direction.
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DeepSurge: Network Architecture

Next, we encode these sources and combine them into one timeseries representing the 
storm’s lifetime.
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DeepSurge: Network Architecture

Lastly, we apply a Recurrent Neural Network (RNN) to process each step of the timeseries 
in the context of all previous steps, and then output our peak surge prediction.
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ADCIRC Training 
Data
• Since actual surge 

observations are scarce, we 
train on surge data generated 
by ADCIRC

• We only seek to model the 
wind-induced portion of surge, 
ignoring other sources of flow 
such as rainfall and river 
outflow

• ADCIRC is run on a 15,000-
node mesh for 270 historical 
storms to generate training 
data
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Validation
• Right: A (log-scale) density 

scatterplot of DeepSurge
predictions (y) compared to the 
ADCIRC targets (x) on the held-
out set

• DeepSurge matches ADCIRC 
predictions well on the test set 
(r=0.71, MSE=0.259 meters)

• There is a somewhat negative 
bias, especially noticeable for 
large surges (>4 meters)

• We find that DeepSurge and 
ADCIRC show similar skill when 
compared to a small dataset of 
observations from NOAA tide-
gauges (not shown)
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Comparison: 
Hurricane Katrina 
(2005)

DeepSurge (bottom) 
underestimates peak surge 
slightly compared to 
ADCIRC (top), but captures 
the spatial pattern of surge 
quite well

ADCIRC

DeepSurge
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Comparison: 
Hurricane Harvey 
(2017)

• DeepSurge (right) again captures the spatial pattern 
of surge along the US Coast well

• It does have a spurious overestimation of surge in 
western Cuba, but otherwise does reasonably well

ADCIRC DeepSurge
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Computational 
Efficiency

Comparing ADCIRC and DeepSurge runtimes on the same 
computing system for Hurricane Katrina (2005), we find that 
DeepSurge has a 12.5x speedup.

By leveraging a shared initialization stage when predicting many 
storms in one run of DeepSurge, the practical speedup may be 
as high 96x
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• Dataset: DeepSurge
predictions from 10,000 
synthetic storms, split 
between a historical (1950-
2014) and future (2015-
2050) period.

• Synthetic storms are 
extracted from eight CMIP6 
HighResMIP simulations 
using the TempestExtremes
algorithm (Roberts 2019)

DeepSurge-modeled 15-year surge event for the historical period

Evaluating Future 
Surge Risk



15

Future Surge Risk: 
Magnitude Change
• This plot answers the question 

“How much stronger is the future 
15-year event, compared the 
historical 15-year event?”

• New Orleans is highlighted as an 
area of risk, with the 15-year 
event increasing in height by 
~0.45 meters on average

• Other areas with increasing risk: 
southern Florida, western Cuba, 
Chesapeake Bay, 
Massachusetts & Maine

DeepSurge-modeled change in 15-year surge event for the future period
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• This plot answers the 
question, “How much more 
often will the 15-year 
historical event occur in the 
future?”

• For some regions, noticeably 
near New Orleans, the 
answer is close to a 100% 
increase, a doubling in 
frequency

• Other regions, such as much 
of the Bahamas, show a 
decrease

DeepSurge-modeled change in 15-year surge event for the future period

Future Surge Risk: 
Frequency Change
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• Neural networks can effectively model 
complex storm surge interactions on 
open coasts as well as bays and 
estuaries

• The efficient inference of neural 
networks uniquely enables robust 
analysis the tropical cyclone risk in a 
changing climate

• We analyze future changes in surge risk 
in the North Atlantic finding increasing 
risk in New Orleans, south Florida, and 
other regions

Conclusions

DeepSurge-modeled Hurricane Charley (2004)
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