

Developing fruitful community collaborations in operational model development: Discussion and guidelines in the context of the UFS-R2O Project

Deepthi Achuthavarier

OSTI Modeling Program, NWS, NOAA and IBSS Corporation

Kevin Garrett¹, Youngsun Jung¹, Aaron Poyer¹, Yan Xue¹, Jacob Carley⁵, Arun Chawla⁵, Avichal Mehra⁵,
Zhan Zhang⁵, Curtis Alexander⁸, Cristiana Stan⁷, Xuejin Zhang⁹, Jessie Carman³, Maoyi Huang³,
Chandra Kondragunta³, Hendrik Tolman⁴, Jim Kinter⁷, Vijay Tallapragada⁵, Jeff Whitaker⁶


¹OSTI Modeling Program, NWS/NOAA, Silver Spring, MD, ²IBSS Corporation, Silver Spring, MD, ³NOAA/OAR/WPO, Silver Spring, MD, ⁴NOAA/NWS/OSTI, Silver Spring, MD, ⁵EMC, NWS/NOAA, College Park, MD, ⁶NOAA Physical Sciences Lab, Boulder, CO, ⁷George Mason University, Fairfax, VA, ⁸NOAA Global Systems Laboratory, Boulder, CO, ⁹NOAA/AOML, Miami, FL

AMS Annual Meeting, Baltimore, MD
January 28 - February 1, 2024

Unified Forecast System - Background

- Community-based **global coupled modeling** system with a mission to accelerate **operational model development** by incorporating timely and efficient research innovations
- Simultaneously developing a **state-of-the-art community modeling** system for research applications
- **Operational mission** makes this a unique community modeling effort

Engaging with an Operational UFS Project

Operational requirements

Evaluation metrics

Forecasters Priorities

EMC
NCO
MEG

R2O Funnel

OSTI
UFS

UFS Applications
UFS-R2O
T2O NOFO

JTTI

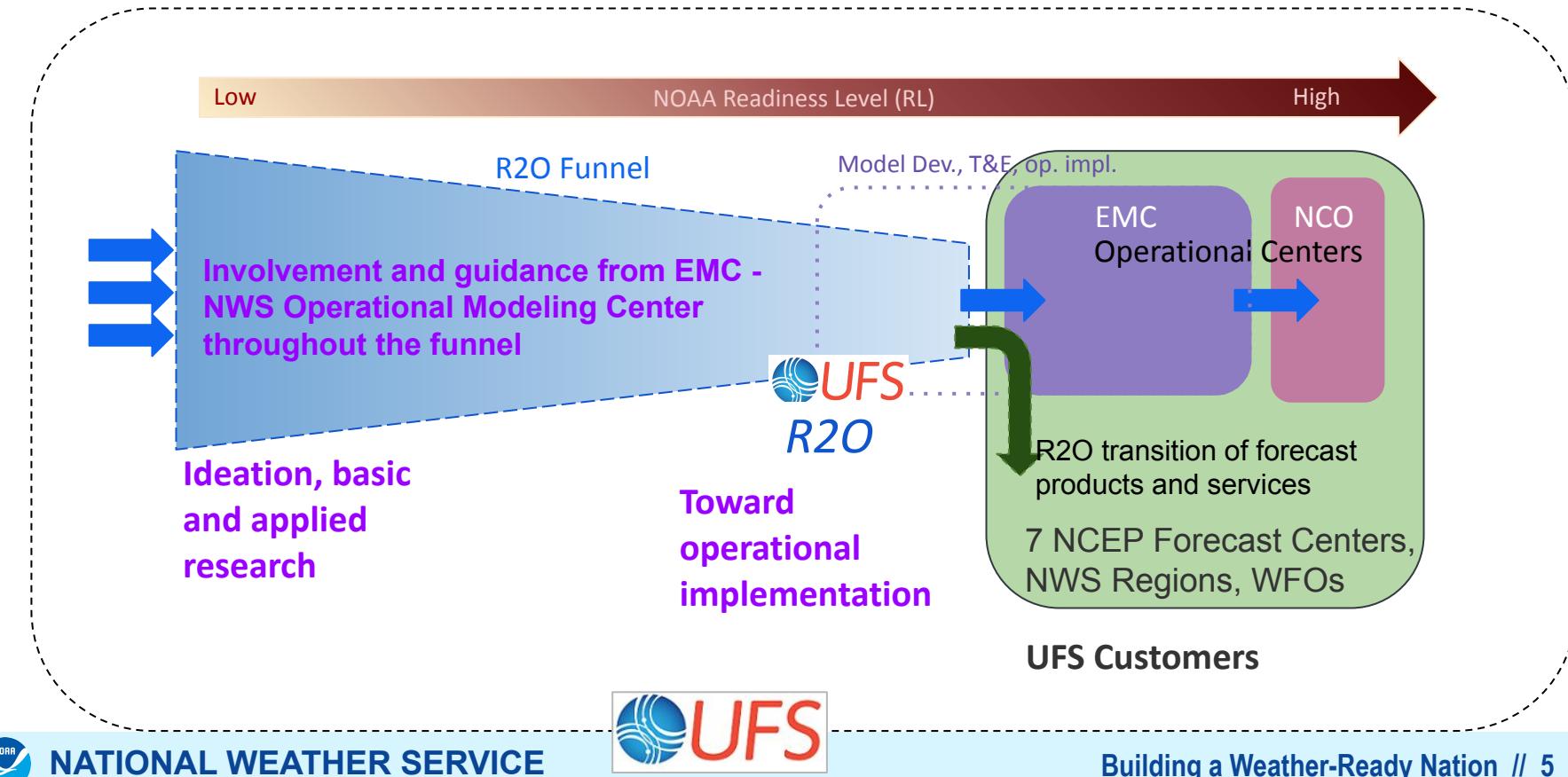
R2O Stages and Gates

Customers and stakeholders

Downstream Products
NCEP
WPO
EPIC
METPlus

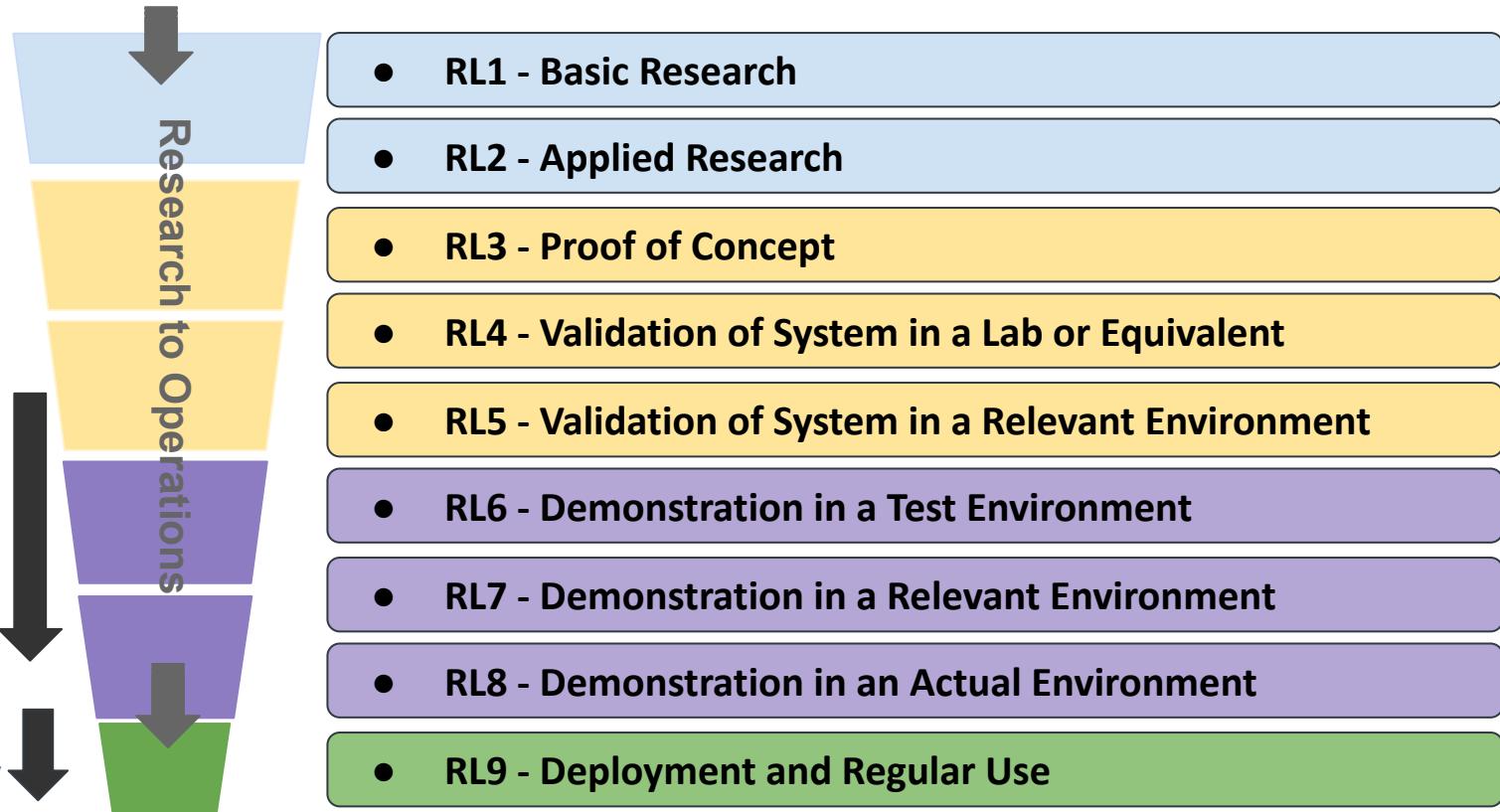
Headline scores

Readiness Levels


Objectives

- Provide an overview of Research to Operations (R2O) transitions
- Discuss operational requirements and expectations from external collaborators
- Discuss pathways to engage with R2O for existing and potential collaborators from research and academia.

Overview of R2O Funnel



(Operational) Readiness Levels

R2O Projects
typically
transition to
Level 8

RL 8 to 9 is
carried out by
EMC

RL break-down from R. Certner, L. Newcomb and G. Matlock, 2018

Customers and Development Priorities

- **Customers of UFS Applications**
 - NWS Forecasters
 - NCEP Forecast Centers
 - NWS Regional HQs, Local WFOs
- **Development priorities**
 - Forecasters requirements
 - Model biases impacting operational mission
 - Scientific priorities developed collectively by the community (NOAA operations, NOAA research and non-NOAA research)

UFS Evaluation Metrics

A	B	C	D	E	F	G	H	I	J
FIELD	LEVEL	DETERMINISTIC METRIC	ENSEMBLE METRIC	PROBABILISTIC METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATION APPROACH	VALIDATION SOURCE
TIER 1									
Heights	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly		Full Domain	Grid-to-obs	Raobs + Aircraft
Temperature	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly	0°C for 850 temps, 12°C for 700 temps	Full Domain	Grid-to-obs	Raobs + Aircraft
U and V Wind Components	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly	30, 40 kt at 700-hPa 50 kt at 850-hPa	Full Domain	Grid-to-obs	Raobs + Aircraft
Specific Humidity	Profile	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	3-Hourly	15 g/kg at 850 and 925-hPa	Full Domain	Grid-to-obs	Raobs + Aircraft
TIER 2									
Precipitation	Surface	Total Interest (MODE), FSS, and Contingency Table Counts	FSS + CTC + Rank Histogram	Reliability Diagram	Hourly to f24 and then 3-hourly, also 24-hourly	3h: 0.25", 0.5", 1" (include 0.1" in winter) and 24h: 1" and 2" (include 0.5" in winter)	CONUS divided into fourths + Alaska	Grid-to-grid, grid-to-obs	CCPA
Temperature	Sfc/2-m	BCRMSE + Bias	RMSE of Ens. Mean + Ensemble Spread + Ranked	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly	0°C, 60°F (when paired with high Td)?	CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs
Wind	Sfc/10-m	BCRMSE + Mean Error Bias	RMSE of Ens. Mean + Ensemble Spread + Ranked Histogram	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly		CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs
Dew Point	Sfc/2-m	BCRMSE + Threshold Bias (do not compute stats for low values)	RMSE of Ens. Mean + Ensemble Spread	ROC + Reliability + BSS	Hourly to f24 and then 3-hrly	50, 60, 70°F (possibly 40 and 50 in the west?); need lower threshold for fire wx	CONUS divided into fourths + Alaska	Grid-to-obs	METARS + some mesonet + marine obs

2021 DTC UFS
Evaluation Metrics
Workshop and
Community driven
metrics for UFS
R2O transitions

4 tiers of metrics for
all UFS Applications
for deterministic and
probabilistic
verifications with
suggested obs data
sources

Tara Jensen (DTC/NCAR), Jason Levit (EMC), UFS V&V Co-leads

Supporting Programs and Projects

(Pathways to Engage with R2O)

NOAA Operations

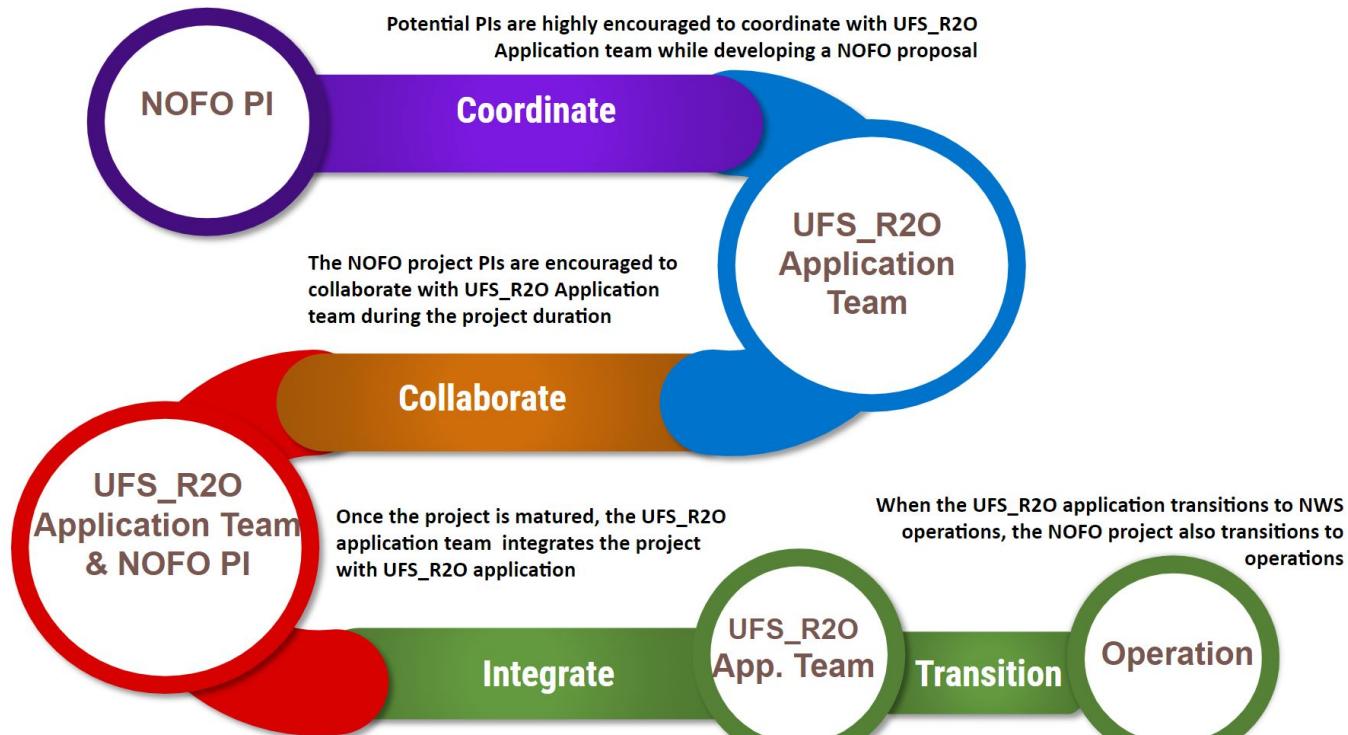
NOAA/NWS /OSTI

- NGGPS
- Weeks 3-4 /S2S
- HFIP
- Air Quality

NOAA Research

NOAA/OAR /WPO

- JTTI
- EPIC
- S2S


- **Funded UFS-R2O efforts**
- **In-kind collaboration with UFS-R2O**
- **Competitives calls (NOFO) from NWS and OAR that collaborate with UFS-R2O Team**
- **Calls from other funding agencies in lower RLs (e.g., NSF Call, April 2023)*

*no direct interface with UFS-R2O

Integration of JTTI NOFO projects with UFS-R2O

Slide courtesy: Chandra Kondragunta, JTTI Program Manager

What to Expect during a High RL R2O Project

- Typically high RL R2O projects are 2-3 years long with **specific deliverables and milestones**
- Expect to **work closely with NWS operational centers** and model developers with the operational or similar codebases
- **Regular meetings** (monthly, weekly) and reporting, **project management and tracking**
- **Webinars and discussion forums** - EMC Model Evaluation Group (MEG) weekly webinars, UFS, Weeks 3-4, S2S All-hands
- **Stay tuned for questions until the technology transfer to operations is complete**, answer questions
- Final adoption of the code is dependent on **NCO guidelines**

An Example of a Successful R2O Transition

National Centers for Environmental Prediction
Environmental Modeling Center (EMC)

06/2019-05/2021 06/2021-05/2022 06/2022-05/2023 06/2023-11/2023 12/2023-05/2024 06/2024

~4 years - Dev, T&E

~6 months after IOC

HAFSv0.1 prototype and development

HAFSv0.2 development and real-time demo

HAFSv0.3 configuration, retro forecasts & IOC

HAFSv1 IOC implementation and real-time operations

HAFSv2 baseline, development, and upgrades

Create HAFS prototype version;
Development essential capabilities

T&E the integrated HAFS in real-time forecasts

Create and implement HAFS IOC;
T&E HAFS in real-time forecasts

Operate HAFS in real-time forecasts

Develop and upgrade HAFS for the next cycle of implementation

New impl'n

Slide courtesy: Xuejin Zhang (AOML), Zhan Zhang (EMC), UFS-R2O Hurricane Application Team Co-Leads

Further Information and Links

- **Projects and sponsoring programs**
 - [UFS-R2O](#) (Project Plan, Applications and Leads and contact info)
 - NWS Programs - [NGGPS](#), [Weeks 3-4](#), [HFIP](#), [Air Quality](#)
 - OAR Programs - [JTTI](#), [EPIC](#), [S2S](#)
- **Overall guidance on R2O transitions**
 - [Research to Operations processes and examples](#) and case studies
 - [NOAA's guidance on R2O transitions](#) (more on Readiness Levels)
- **Model development priorities**
 - [Forecasters priorities](#) (MRW/S2S and SRW)
 - [UFS Strategic Plan \(Science priorities\)](#)
- **NCEP Operational implementation and software standards**
- **Model evaluation standards**
 - [UFS model evaluation metrics](#)

Areas that Need Continued Progress

- Access limitations of **NOAA HPC** by non-NOAA researchers
- **Access to data** - observations and model runs (high res, ensemble)
- Continuing focus on **science publications** for active academic collaborations

Clouds, Lighthouse, Fish, Windsock, Thermometer, Airplane

Thank You

Contact: deepthi.achuthavarier@noaa.gov

NATIONAL WEATHER SERVICE

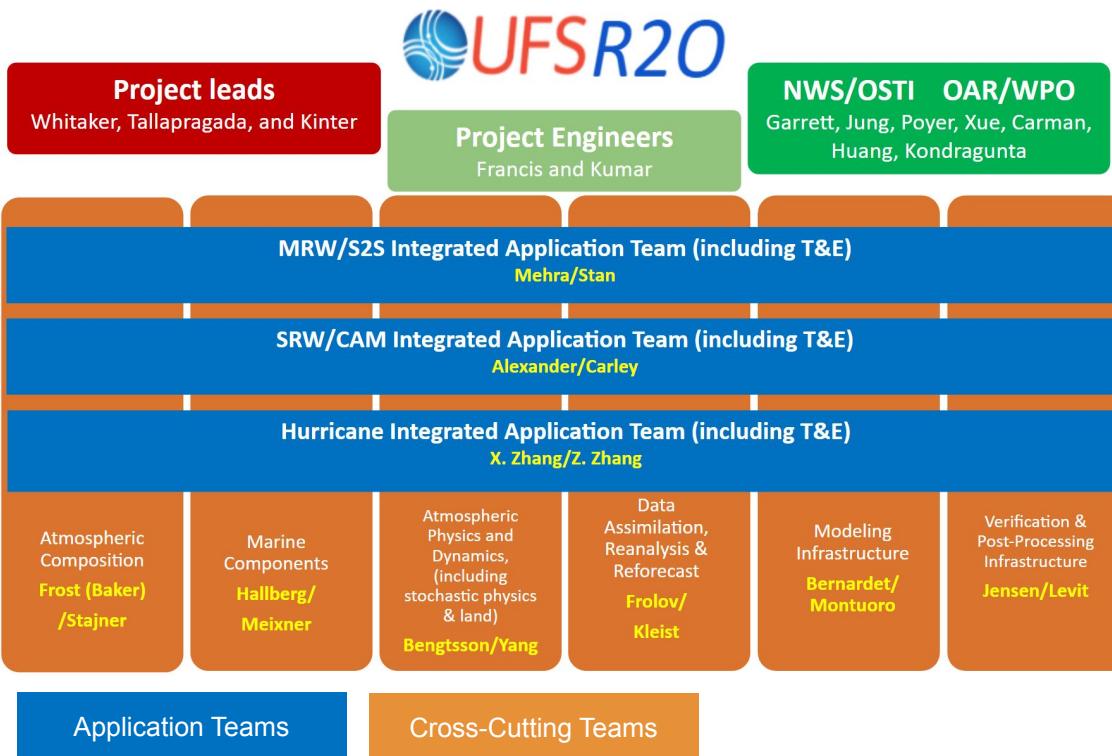
Building a Weather-Ready Nation // 15

Types of R2O Transitions

- **Systems level transitions**

- A major aspect of the UFS is selected from a community-based model repository. Relatively infrequent event - Occurs when a new application is brought in - or as part of a long-term strategy to address a basic model shortcoming. E.g., Introduction of FV3 dynamical core. Timeline for transition - ~5 years

- **Application level transitions**


- Significant changes to a model component - E.g., advancing Atmospheric model Physics. Timeline - months to 2 years

- **Incremental level transitions**

- More frequent. Target narrow changes to an existing operational system. Can be scientific, technical, and/or engineering improvements. E.g., Investigation of sensitivity of the forecast to grid-scale mixing parameterizations. Relatively less time consuming.

UFS-R2O - A High RL UFS Project

Funded by both NOAA Operations and Research

Co-led by scientists at operational centers, research labs, and universities

Non-NWS partners work closely with NWS in transitioning research innovations to operational models

Transition to Operations (T2O) at EMC

- **Assembling and optimizing**
 - Hierarchical testing and evaluation to **finalize the configuration** of individual components that are included in the upgrade.
 - Work with the developers to optimize the performance of each component
 - Assemble all components together to conduct experiments that involve only the forecast system or only the data assimilation system, further **optimize the forecast and data assimilation system respectively**
 - **Combine the forecast and data assimilation systems** together to perform cycled experiments, further optimize the entire system.
 - To prepare for implementation, carry out official **retrospective and real-time parallel experiments**, and evaluate the system performances.
- The Transition Team often consists of community collaborators, EMC model developers and system engineers

Transition to Operations (T2O) at EMC

- **Transition to Operations**

- Code freeze
- Model runs start for real-time EMC parallel, retrospectives and case studies. Evaluations by MEG start at this stage.
- Evaluations from other NCEP centers and field due. Some perform their own (e.g., CPC in the case of GEFS, most draw their conclusions from weekly MEG briefings), Downstream Products evaluation
- Briefing before EMC CCB (Change Control Board) - by Technical lead
- Briefing before NCEP Office of the Director (OD) - by Overall Project Manager
- Code hand-off to NCO and NCO 30-day IT Test

- **Implementation**

