
Tomorrow.io
Luke Conibear (luke.conibear@tomorrow.io), Ashley E. Payne, 
Allison Reed Harris, Tyler McCandless, Steven Brey, Kushal 
Keshavamurthy, Maxfield E. Green, Stylianos Flampouris, Luke 
Peffers

Operationalizing a Machine 
Learning Approach to 
Post-Processing High 
Resolution NWP Forecasts
February 2024

Session J15C - Towards Operationalizing AI/ML Weather 
Forecast and Decision Support Products II

1

mailto:luke.conibear@tomorrow.io


● Code standards
● Tests
● Experiment tracking
● Documentation
● Containers
● Infrastructure
● Continuous integration
● Deployment (continuous)
● Monitoring
● Performance
● Cost

● Data management
○ Requirements for data, 

backups, security, 
handling, sharing, etc.

● Software management
○ Version control, 

environments, etc.
○ Commonly find a Jupyter 

notebook in a GitHub 
repository with a conda 
environment.

● Software licensing
○ Licence type, funder 

requirements, etc.

2

Manage data and software 
Research

Cost-effective deployment
Operations

Problem

The content of the work
Science

● Talk: Data, Ashley Payne, 29th 
January 2024, 2:00 PM, 337.

● Poster: Science, Ashley Payne, 
29th January 2024, 3:00 PM, 
Hall E (100 Level).

● Paper (pre-print): An 
operational machine learning 
system that post-processes 
high-resolution, deterministic 
weather forecasts to produce 
short to medium-range 
probabilistic weather 
forecasts.

https://arcdocs.leeds.ac.uk/guidance/data_management.html
https://arcdocs.leeds.ac.uk/guidance/software_management.html
https://arcdocs.leeds.ac.uk/guidance/software_licensing.html
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436768
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436739
https://essopenarchive.org/users/671501/articles/672865-post-processing-using-deep-learning-to-create-operational-high-resolution-and-probabilistic-weather-forecasts


Manual
1. Initial ML exploration

● Code standards
● Tests
● Experiment tracking
● Documentation

Phases



● Refactor to clean and simple code without new functionality.
○ e.g., from notebooks to modular scripts, remove dispensibles, meaningful naming, simplify.
○ 📗 Refactoring Guru (2023), Refactoring.
○ 📗 Martin (2008), Clean Code.

● Lint (static analysis) to find errors and bugs.
○ 🔧Ruff (VSCode extension)

● Format to make code easier to read and understand.
○ 🔧 Ruff Formatter
○ 📗 Google Python Style Guide

● Type checking: 🔧 mypy
● Metadata standards to ensure consistent for all weather data.

○ 📗 Climate and Forecast (CF) Metadata Conventions
● Templates to only expose decisions need to make.

○ 🔧 Cookiecutter
● Custom libraries for small, focused, and reused code.

○ 🔧 Private PyPI on JFrog 

Code standards

4

1. Improve consistency, readability, and maintainability.
2. Focus time on decisions need to make.
3. Reduce unneeded complexity, manual steps, and technical debt.

https://refactoring.guru/refactoring
https://www.oreilly.com/library/view/clean-code-a/9780136083238/
https://docs.astral.sh/ruff/linter/
https://marketplace.visualstudio.com/items?itemName=charliermarsh.ruff
https://docs.astral.sh/ruff/formatter/
https://google.github.io/styleguide/pyguide.html
https://mypy.readthedocs.io/en/stable/index.html#
https://cfconventions.org/cf-conventions/cf-conventions.html
https://github.com/cookiecutter/cookiecutter
https://jfrog.com/help/r/jfrog-artifactory-documentation/pypi-repositories


● Unit tests for individual components.
○ 🔧 pytest

■ Can use fixtures to share test data across different tests.
■ Can use parametrize to check multiple cases.

○ 📗 Khorikov (2020), Unit Testing Principles, Practices, and Patterns.
● Property-based tests to find edge cases.

○ 🔧 Hypothesis
● Mock tests with dummy objects.

○ e.g., network access, resource-intensive, hardware-limitations.
○ 🔧 unittest.mock

● Regression tests for any new bugs found.
● Integration tests to validate the system end-to-end.
● ML-specific tests pre, during and post training.

○ e.g., data (distributions, leakage, ranges, types, missing), model shape, weights update, loss 
reduces, overfit single batch, metrics above threshold.

○ 📗 Jordan (2020), Effective testing for machine learning systems.

Tests

5

1. Protect against bugs and enable fast feedback.
2. Improve maintainability and refactoring by testing output and not binding to implementation 

details.

https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/how-to/fixtures.html
https://docs.pytest.org/en/latest/how-to/parametrize.html
https://www.manning.com/books/unit-testing
https://hypothesis.readthedocs.io/en/latest/index.html
https://docs.python.org/3/library/unittest.mock.html
https://www.jeremyjordan.me/testing-ml/


● Measure and monitor metrics.
○ 🔧 W&B

● Collect user-defined arguments in configs.
○ 🔧 ml_collections (type safe, extendable).
○ Track lineage by versioning everything (e.g., data, software, system).

■ 📗 Semantic versioning.
● Pass user-defined configs to scripts as jobs.

○ 🔧 Abseil (type safe).
○ e.g., Flax (neural network library) config, script, variants.

Experiment tracking

6

1. Reproducible record of experiments.
2. Enable a fast prototyping loop.

https://wandb.ai/site
https://github.com/google/ml_collections
https://semver.org/
https://abseil.io/docs/python/quickstart
https://github.com/google/flax/blob/main/examples/mnist/configs/default.py
https://github.com/google/flax/blob/main/examples/mnist/main.py
https://github.com/google/flax/blob/main/examples/imagenet/configs/default.py


● 📗 Comments
● Docstrings

○ 📗 Google style
● Other e.g., processes, setups, guides, etc.

○ 🔧 Confluence

Documentation

7

1. Explanations not understandable from the code e.g., why, architecture.
2. Communication and collaboration between developers to maintain, reuse, and extend systems.
3. Onboard new developers.

https://refactoring.guru/smells/comments
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://www.atlassian.com/software/confluence


Manual
1. Initial ML exploration

● Code standards
● Tests
● Experiment tracking
● Documentation

Automated
2. Repeatable and reliable

● Phase 1
● Containers
● Infrastructure
● Continuous integration
● Deployment (continuous)
● Monitoring

Phases



● Small images and fast builds.
○ 🔧 Docker
○ 📗 Turner-Trauring (2023), Python on Docker Production Handbook.

● Develop in the same environment as used in continuous integration and production.
○ 🔧 DevContainers (VSCode)

● Customise pre-built images from ML platform.
○ Optimised for ML platform with drivers, CUDA, etc.

Containers

9

1. Increase consistency, reproducibility, and portability of isolated environments.
2. Speed up onboarding, development, and deployment by removing environment issues (e.g., “it 

works on my laptop”, Apple chips, conda issues).

https://www.docker.com/
https://pythonspeed.com/products/productionhandbook/
https://containers.dev/
https://code.visualstudio.com/docs/devcontainers/containers


● Infrastructure-as-code to version control, automate, and scale reproducible resources.
○ 🔧 Terraform

● Fully-managed ML platform
○ e.g., Azure ML (Microsoft), SageMaker (AWS), Vertex AI (GCP).
○ SDKs: native (optimised for platform, simpler) and open-source (portable).
○ Registries: containers, models, metadata.
○ Compute: development (e.g., notebooks, instances) and jobs (e.g., clusters, accelerators).

■ Start small and incrementally adjust.
■ Memory-optimised.
■ 📗 Prasanna (2020), Choosing the right GPU for deep learning on AWS.

● Considerations mostly transfer to other clouds
● Memory (GPU, bandwidth).
● Profile utilisation.

Infrastructure

10

1. Provide hardware and software to develop and deploy reliably and efficiently.

https://www.terraform.io/
https://towardsdatascience.com/choosing-the-right-gpu-for-deep-learning-on-aws-d69c157d8c86


● Automatically run checks and tests e.g., formatting, linting, type checking.
○ 🔧 GitHub Actions
○ 🔧 pre-commit

● Local replication
○ 🔧 Makefiles
○ 🔧 act

Continuous integration

11

1. Automate merging and checking of new code changes.

https://github.com/features/actions
https://pre-commit.com/
https://makefiletutorial.com/
https://github.com/nektos/act


● Consistent solution across company
○ Our system includes PubSub (notifications), Kubernetes (compute), and cloud storage.

■ e.g., new data (automatic notification), on demand (manual send in notification), 
schedule (cron job).

■ Continuous testing (CT) in production (performance degradation, concept drift, data 
schema).

■ Combine jobs into pipeline e.g., preprocessing and inference.
■ 📗 Anderson, Kubernetes Deconstructed.

Deployment (continuous)

12

1. Enable deployment strategies (e.g., manual, automatic, during pull-request, A/B), pipelines, 
and frequent release iterations (including rollbacks). 

https://vimeo.com/245778144/4d1d597c5e


● Measure, monitor, and summarise errors.
○ 🔧 DataDog Metrics, Monitors, and Dashboards.

● Alert, track, and respond to issues.
○ 🔧 PagerDuty Services, Integrations, and Schedules.

● Document the on-call process.
● Review (post-mortem) service interruptions.
● Consider different KPIs e.g., scientific (metrics), engineering (latency, cost), operational (availability).

Monitoring

13

1. Enable quick identification and resolution of errors.
2. Measure and monitor key performance indicators (KPIs).

https://docs.datadoghq.com/metrics/
https://docs.datadoghq.com/monitors/
https://docs.datadoghq.com/dashboards/
https://support.pagerduty.com/docs/services-and-integrations
https://www.pagerduty.com/integrations/
https://support.pagerduty.com/docs/schedule-basics


14

Manual
1. Initial ML exploration

● Code standards
● Tests
● Experiment tracking
● Documentation

Automated
2. Repeatable and reliable

Cost-effective
3. Scalable

● Phase 1
● Containers
● Infrastructure
● Continuous integration
● Deployment (continuous)
● Monitoring

● Phase 2
● Performance
● Cost

Phases

● 📗 Best Practices for ML Engineering, Google.
● 📗 Breck et al., (2017), The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction.
● 📗 Full Stack Data Science
● 📗 Huyen (2022), Designing Machine Learning Systems, O'Reilly Media, Inc.
● 📗 Machine Learning Engineering for Production (MLOps) Specialization, Coursera, DeepLearning.AI
● 📗 Sculley et al., (2014), Machine Learning: The High-Interest Credit Card of Technical Debt.
● 📗 Sculley, et al., (2015), Hidden Technical Debt in Machine Learning Systems.
● 📗 Godbole et al., (2023), Deep Learning Tuning Playbook.

https://developers.google.com/machine-learning/guides/rules-of-ml/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://fullstackdeeplearning.com/
https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/
https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops?utm_source=deeplearning-ai&utm_medium=institutions&utm_campaign=20210423-mlep-1-deeplearning-ai-institutions-dlai-website
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43146.pdf
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://github.com/google-research/tuning_playbook


● 📗 Profiling analyses your code.
○ Time: 🔧 %timeit (IPython magic command), SnakeViz (visualises cProfile output).
○ Memory: 🔧 memray (live and visual).

● 📗 Data structures, algorithms, and libraries.
○ e.g., built-ins, standard/optimised libraries, data types, data precision, minimise data movement.
○ Efficient access to traditional file types (e.g., NetCDF, GRIB2) on the cloud: 🔧 kerchunk.
○ Compress to information content: 🔧 xbitinfo (xbitinfo-python).
○ Libraries that work well together: 🔧 JAX (high-performance numerical computing), Flax (neural 

networks), Scenic (computer vision), use as data model within xarray.
● 📗 Vectorisation (broadcasting): 🔧 JAX.
● 📗 Compile using JITs (Just-In-Time): 🔧 Numba, JAX.
● 📗 Parallelise large problems into many smaller ones and solves them simultaneously.

○ 🔧 Joblib, Dask, Kubernetes replicas (horizontal pod autoscaling, KEDA), JAX.
○ 📗 Distributed ML training: 🔧 Horovod.

● 📗 Accelerators: 🔧 Numba, JAX.
● 📗 ML data pipelines: 🔧 tf.data.

Performance

15

1. Optimise code after it is correct, tested, documented, and profiled.
2. Efficient resource use and time to solution.

https://www.lukeconibear.com/swd6_hpp/01_profiling.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://jiffyclub.github.io/snakeviz/
https://bloomberg.github.io/memray/
https://www.lukeconibear.com/swd6_hpp/02_data_structures_algorithms_libraries.html
https://fsspec.github.io/kerchunk/
https://xbitinfo.readthedocs.io/en/latest/index.html
https://anaconda.org/conda-forge/xbitinfo-python
https://github.com/google/jax
https://github.com/google/flax
https://github.com/google-research/scenic
https://github.com/google-deepmind/graphcast/blob/main/graphcast/xarray_jax.py
https://www.lukeconibear.com/swd6_hpp/03_vectorisation.html
https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html
https://www.lukeconibear.com/swd6_hpp/04_compilers.html
https://numba.readthedocs.io/en/stable/user/vectorize.html#
https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://www.lukeconibear.com/swd6_hpp/05_parallelisation.html
https://joblib.readthedocs.io/en/latest/
https://docs.dask.org/en/latest/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/
https://jax.readthedocs.io/en/latest/jax-101/06-parallelism.html
https://www.lukeconibear.com/intro_ml/05_distributed.html
https://github.com/horovod/horovod
https://www.lukeconibear.com/swd6_hpp/06_GPUs.html
https://numba.pydata.org/numba-doc/latest/cuda/index.html
https://jax.readthedocs.io/en/latest/jax-101/01-jax-basics.html
https://www.lukeconibear.com/intro_ml/03_data.html#data-pipelines
https://www.tensorflow.org/guide/data


● Create cost budgets, alerts, attributions, and reports.
○ Tag resources.
○ 🔧 DoIT

● Tips to reduce costs.
○ Profile and monitor what actually use.
○ Stop/scale down instances/clusters when not in use (automatically if possible).
○ Start small on a sample of data, and scale out when ready.
○ For clusters, set the minimum node count to 0.
○ Spot (preemptible) instances.
○ Checkpointing.
○ Add data retention and deletion policies.
○ Careful of data backups, excessive logging, cross-regional resources.

Cost

16

1. Manage and optimise costs.

https://www.doit.com/home/


Manual
1. Initial ML exploration

● Proof-of-concept complete 
(i.e., Jupyter notebooks, 
sample data, CPUs, split from 
in-house deployment system). 

● Created operational prototype
○ 📗 Refactoring, CF 

conventions, Google 
style

○ 🔧Ruff, Ruff 
Formatter, mypy, 
Cookiecutter, JFrog, 
pytest, unittest.mock, 
W&B, ml_collections, 
Abseil

Automated
2. Repeatable and reliable

Cost-effective
3. Scalable

● Increased to full data set.
● Integrated with in-house 

deployment system including 
automated pipelines.

○ 🔧 Fully-managed ML 
platform, Docker, pre-built 
images, DevContainers, 
Terraform, GitHub 
Actions, pre-commit, 
Makefiles, PubSub, 
Kubernetes, cloud 
storage, DataDog, 
PagerDuty, Confluence

● Reduced time, cost, and file size 
by 90+%. 

○ 🔧 SnakeViz, memray, 
bottleneck, polars, 
tf.data, mixed precision, 
accelerators, JIT, Joblib, 
KEDA, xbitinfo-python, 
lifecycle configs, spot 
training, DoIT

● Training ~1.5 hours for CONUS 
(~9.5 hours for Global) on 1 
NVIDIA T4.

● Scalable
○ Data, projects, training.

Results

https://refactoring.guru/refactoring
https://cfconventions.org/cf-conventions/cf-conventions.html
https://cfconventions.org/cf-conventions/cf-conventions.html
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://docs.astral.sh/ruff/linter/
https://docs.astral.sh/ruff/formatter/
https://docs.astral.sh/ruff/formatter/
https://mypy.readthedocs.io/en/stable/index.html#
https://github.com/cookiecutter/cookiecutter
https://jfrog.com/help/r/jfrog-artifactory-documentation/pypi-repositories
https://docs.pytest.org/en/latest/
https://docs.python.org/3/library/unittest.mock.html
https://wandb.ai/site
https://github.com/google/ml_collections
https://abseil.io/docs/python/quickstart
https://www.docker.com/
https://containers.dev/
https://www.terraform.io/
https://github.com/features/actions
https://github.com/features/actions
https://pre-commit.com/
https://makefiletutorial.com/
https://docs.datadoghq.com/
https://support.pagerduty.com/docs/introduction
https://www.atlassian.com/software/confluence
https://jiffyclub.github.io/snakeviz/
https://bloomberg.github.io/memray/
https://github.com/pydata/bottleneck
https://pola.rs/
https://www.tensorflow.org/guide/data
https://www.lukeconibear.com/swd6_hpp/06_GPUs.html
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://joblib.readthedocs.io/en/latest/
https://keda.sh/
https://anaconda.org/conda-forge/xbitinfo-python
https://www.doit.com/home/


● Towards operationalising ML weather products
○ Go incrementally through phases:

■ Phase 1: Initial ML exploration (manual)
■ Phase 2: Repeatable and reliable (automated)
■ Phase 3: Scalable (cost-effective)

○ Starting small, simplifying where can, only adding what is required, only exposing decisions 
need to make, and if in doubt follow good software engineering practices.

Luke Conibear (luke.conibear@tomorrow.io)

Summary

18

● Talk: Data, Ashley Payne, 29th January 2024, 2:00 PM, 337.
● Poster: Science, Ashley Payne, 29th January 2024, 3:00 PM, Hall E (100 Level).
● Paper (pre-print): Operational ML post-processes system to create probabilistic forecasts.

mailto:luke.conibear@tomorrow.io
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436768
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436739
https://essopenarchive.org/users/671501/articles/672865-post-processing-using-deep-learning-to-create-operational-high-resolution-and-probabilistic-weather-forecasts

