Tomorrow.io

Luke Conibear (luke.conibear@tomorrow.io), Ashley E. Payne,
Allison Reed Harris, Tyler McCandless, Steven Brey, Kushal
Keshavamurthy, Maxfield E. Green, Stylianos Flampouris, Luke
Peffers

Operationalizing a Machine
Learning Approach to
Post-Processing High
Resolution NWP Forecasts

February 2024

Session J15C - Towards Operationalizing Al/ML Weather
Forecast and Decision Support Products Il

§7 tomorrow..

mailto:luke.conibear@tomorrow.io

Problem

Science

The content of the work

e Talk: Data, Ashley Payne, 29th
January 2024, 2:00 PM, 337.

° Poster: Science, Ashley Payne,
29th January 2024, 3:00 PM,

Hall E (100 Level).

° Paper (pre-print): An
operational machine learning
system that post-processes
high-resolution, deterministic
weather forecasts to produce
short to medium-range
probabilistic weather

forecasts.

37 tomorrow..

7

Research

Manage data and software

Data management

(e]

Requirements for data,
backups, security,
handling, sharing, etc.

Software management

(e]

Version control,
environments, etc.
Commonly find a Jupyter
notebook in a GitHub
repository with a conda
environment.

Software licensing

(e]

Licence type, funder
requirements, etc.

Operations

Cost-effective deployment

Code standards

Tests

Experiment tracking
Documentation
Containers
Infrastructure
Continuous integration
Deployment (continuous)
Monitoring
Performance

Cost

https://arcdocs.leeds.ac.uk/guidance/data_management.html
https://arcdocs.leeds.ac.uk/guidance/software_management.html
https://arcdocs.leeds.ac.uk/guidance/software_licensing.html
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436768
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436739
https://essopenarchive.org/users/671501/articles/672865-post-processing-using-deep-learning-to-create-operational-high-resolution-and-probabilistic-weather-forecasts

Phases

1. Initial ML exploration

Code standards
Tests

Experiment tracking
Documentation

37 tomorrow..

Code standards

1. Improve consistency, readability, and maintainability.
2. Focus time on decisions need to make.

3. Reduce unneeded complexity, manual steps, and technical debt.

e Refactor to clean and simple code without new functionality.
o e.g. from notebooks to modular scripts, remove dispensibles, meaningful naming, simplify.
o [l Refactoring Guru (2023), Refactoring.
o |l Martin (2008), Clean Code.

e Lint (static analysis) to find errors and bugs.
o 4 Ruff (VSCode extension)

e Format to make code easier to read and understand.
o 4 Ruff Formatter
o |l Google Python Style Guide

e Type checking: #* mypy

e Metadata standards to ensure consistent for all weather data.
o [l Climate and Forecast (CF) Metadata Conventions

e Templates to only expose decisions need to make.
o 4 Cookiecutter

e Custom libraries for small, focused, and reused code.

\7; tomorrow.. o 4 Private PyPl on JFrog

https://refactoring.guru/refactoring
https://www.oreilly.com/library/view/clean-code-a/9780136083238/
https://docs.astral.sh/ruff/linter/
https://marketplace.visualstudio.com/items?itemName=charliermarsh.ruff
https://docs.astral.sh/ruff/formatter/
https://google.github.io/styleguide/pyguide.html
https://mypy.readthedocs.io/en/stable/index.html#
https://cfconventions.org/cf-conventions/cf-conventions.html
https://github.com/cookiecutter/cookiecutter
https://jfrog.com/help/r/jfrog-artifactory-documentation/pypi-repositories

Tests

1. Protect against bugs and enable fast feedback.
2. Improve maintainability and refactoring by testing output and not binding to implementation
details.

e Unit tests for individual components.
o 4 pytest
m Can use fixtures to share test data across different tests.
m Can use parametrize to check multiple cases.
o | Khorikov (2020), Unit Testing Principles, Practices, and Patterns.
e Property-based tests to find edge cases.
o 4 Hypothesis
e Mock tests with dummy objects.
o e.g., network access, resource-intensive, hardware-limitations.
o 4 unittest.mock
e Regression tests for any new bugs found.
e Integration tests to validate the system end-to-end.
e ML-specific tests pre, during and post training.
o e.g.,data (distributions, leakage, ranges, types, missing), model shape, weights update, loss
reduces, overfit single batch, metrics above threshold.
N7 tomorrow.. o |l Jordan (2020), Effective testing for machine learning systems.

https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/how-to/fixtures.html
https://docs.pytest.org/en/latest/how-to/parametrize.html
https://www.manning.com/books/unit-testing
https://hypothesis.readthedocs.io/en/latest/index.html
https://docs.python.org/3/library/unittest.mock.html
https://www.jeremyjordan.me/testing-ml/

Experiment tracking
1. Reproducible record of experiments.
2. Enable a fast prototyping loop.

e Measure and monitor metrics.
o 4 W&B
e Collect user-defined arguments in configs.
o 4 ml_collections (type safe, extendable).
o Track lineage by versioning everything (e.g., data, software, system).
s [l Semantic versioning.
e Pass user-defined configs to scripts as jobs.
o 4 Abseil (type safe).
o e.g., Flax (neural network library) config, script, variants.

37 tomorrow..

https://wandb.ai/site
https://github.com/google/ml_collections
https://semver.org/
https://abseil.io/docs/python/quickstart
https://github.com/google/flax/blob/main/examples/mnist/configs/default.py
https://github.com/google/flax/blob/main/examples/mnist/main.py
https://github.com/google/flax/blob/main/examples/imagenet/configs/default.py

Documentation

2. Communication and collaboration between developers to maintain, reuse, and extend systems.

@ 1. Explanations not understandable from the code e.g., why, architecture.
3. Onboard new developers.

e [l Comments

e Docstrings
o [l Google style

e Othere.g., processes, setups, guides, etc.
o 4 Confluence

37 tomorrow..

https://refactoring.guru/smells/comments
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://www.atlassian.com/software/confluence

Phases

1. Initial ML exploration

Code standards
Tests

Experiment tracking
Documentation

37 tomorrow..

2. Repeatable and reliable

Automated

Phase 1

Containers
Infrastructure
Continuous integration
Deployment (continuous)
Monitoring

Containers

2. Speed up onboarding, development, and deployment by removing environment issues (e.g., “it

@ 1. Increase consistency, reproducibility, and portability of isolated environments.
works on my laptop”, Apple chips, conda issues).

e Smallimages and fast builds.
o 4 Docker
o | Turner-Trauring (2023), Python on Docker Production Handbook.
e Develop in the same environment as used in continuous integration and production.
o 4 DevContainers (VSCode)
e Customise pre-built images from ML platform.
o Optimised for ML platform with drivers, CUDA, etc.

37 tomorrow..

https://www.docker.com/
https://pythonspeed.com/products/productionhandbook/
https://containers.dev/
https://code.visualstudio.com/docs/devcontainers/containers

Infrastructure

@ 1. Provide hardware and software to develop and deploy reliably and efficiently.
y

37 tomorrow..

Infrastructure-as-code to version control, automate, and scale reproducible resources.
o 4 Terraform
Fully-managed ML platform
o e.g. Azure ML (Microsoft), SageMaker (AWS), Vertex Al (GCP).
o SDKs: native (optimised for platform, simpler) and open-source (portable).
o Registries: containers, models, metadata.
o Compute: development (e.g., notebooks, instances) and jobs (e.g., clusters, accelerators).
m Start small and incrementally adjust.
m Memory-optimised.
[Prasanna (2020), Choosing the right GPU for deep learning on AWS.
e Considerations mostly transfer to other clouds
e Memory (GPU, bandwidth).
e Profile utilisation.

https://www.terraform.io/
https://towardsdatascience.com/choosing-the-right-gpu-for-deep-learning-on-aws-d69c157d8c86

Continuous integration

@ 1. Automate merging and checking of new code changes.

e Automatically run checks and tests e.g., formatting, linting, type checking.
o 4 GitHub Actions
o 4 pre-commit

e Local replication
o 4 Makefiles

o 4 act

§7 tomorrow..

https://github.com/features/actions
https://pre-commit.com/
https://makefiletutorial.com/
https://github.com/nektos/act

Deployment (continuous)

‘y?/

37 tomorrow..

1. Enable deployment strategies (e.g., manual, automatic, during pull-request, A/B), pipelines,
and frequent release iterations (including rollbacks).

e Consistent solution across company
o Our system includes PubSub (notifications), Kubernetes (compute), and cloud storage.

e.g., new data (automatic notification), on demand (manual send in notification),
schedule (cron job).

Continuous testing (CT) in production (performance degradation, concept drift, data
schema).

Combine jobs into pipeline e.g., preprocessing and inference.

B Anderson, Kubernetes Deconstructed.

https://vimeo.com/245778144/4d1d597c5e

Monitoring
1. Enable quick identification and resolution of errors.
2. Measure and monitor key performance indicators (KPls).

e Measure, monitor, and summarise errors.
o 4 DataDog Metrics, Monitors, and Dashboards.
e Alert, track, and respond to issues.
o 4 PagerDuty Services, Integrations, and Schedules.
e Document the on-call process.
e Review (post-mortem) service interruptions.
e Consider different KPIs e.g., scientific (metrics), engineering (latency, cost), operational (availability).

37 tomorrow..

https://docs.datadoghq.com/metrics/
https://docs.datadoghq.com/monitors/
https://docs.datadoghq.com/dashboards/
https://support.pagerduty.com/docs/services-and-integrations
https://www.pagerduty.com/integrations/
https://support.pagerduty.com/docs/schedule-basics

Phases

1. Initial ML exploration

Code standards
Tests

Experiment tracking
Documentation

2. Repeatable and reliable
Automated

Phase 1

Containers
Infrastructure
Continuous integration
Deployment (continuous)
Monitoring

Bl Best Practices for ML Engineering, Google.
B Breck et al., (2017), The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction.

B Full Stack Data Science

V7

3. Scalable
Cost-effective

— ° Phase 2

° Performance
° Cost

B Huyen (2022), Designing Machine Learning Systems, O'Reilly Media, Inc.

B Machine Learning Engineering for Production (MLOps) Specialization, Coursera, DeeplLearning.Al
B Sculley et al., (2014), Machine Learning: The High-Interest Credit Card of Technical Debt.

B Sculley, et al., (2015), Hidden Technical Debt in Machine Learning Systems.

B Godbole et al., (2023), Deep Learning Tuning Playbook.

§7 tomorrow..

https://developers.google.com/machine-learning/guides/rules-of-ml/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf
https://fullstackdeeplearning.com/
https://www.oreilly.com/library/view/designing-machine-learning/9781098107956/
https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops?utm_source=deeplearning-ai&utm_medium=institutions&utm_campaign=20210423-mlep-1-deeplearning-ai-institutions-dlai-website
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43146.pdf
https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://github.com/google-research/tuning_playbook

Performance

® :

37 tomorrow. ¢

Optimise code after it is correct, tested, documented, and profiled.
Efficient resource use and time to solution.

B Profiling analyses your code.
o Time: #° %timeit (IPython magic command), SnakeViz (visualises cProfile output).
o Memory: #/ memray (live and visual).
Bl Data structures, algorithms, and libraries.
e.g., built-ins, standard/optimised libraries, data types, data precision, minimise data movement.
Efficient access to traditional file types (e.g., NetCDF, GRIB2) on the cloud: 4/ kerchunk.
Compress to information content: #* xbitinfo (xbitinfo-python).
Libraries that work well together: #/* |JAX (high-performance numerical computing), Flax (neural
networks), Scenic (computer vision), use as data model within xarray.
Bl Vectorisation (broadcasting): 4/ JAX.
Bl Compile using JITs (Just-In-Time): #* Numba, JAX.
Il Parallelise large problems into many smaller ones and solves them simultaneously.
o 4 Joblib, Dask, Kubernetes replicas (horizontal pod autoscaling, KEDA), JAX.
o |l Distributed ML training: 4 Horovod.
B Accelerators: ## Numba, JAX.
B ML data pipelines: #* tf.data.

o O O O

https://www.lukeconibear.com/swd6_hpp/01_profiling.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit
https://jiffyclub.github.io/snakeviz/
https://bloomberg.github.io/memray/
https://www.lukeconibear.com/swd6_hpp/02_data_structures_algorithms_libraries.html
https://fsspec.github.io/kerchunk/
https://xbitinfo.readthedocs.io/en/latest/index.html
https://anaconda.org/conda-forge/xbitinfo-python
https://github.com/google/jax
https://github.com/google/flax
https://github.com/google-research/scenic
https://github.com/google-deepmind/graphcast/blob/main/graphcast/xarray_jax.py
https://www.lukeconibear.com/swd6_hpp/03_vectorisation.html
https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html
https://www.lukeconibear.com/swd6_hpp/04_compilers.html
https://numba.readthedocs.io/en/stable/user/vectorize.html#
https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
https://www.lukeconibear.com/swd6_hpp/05_parallelisation.html
https://joblib.readthedocs.io/en/latest/
https://docs.dask.org/en/latest/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/
https://jax.readthedocs.io/en/latest/jax-101/06-parallelism.html
https://www.lukeconibear.com/intro_ml/05_distributed.html
https://github.com/horovod/horovod
https://www.lukeconibear.com/swd6_hpp/06_GPUs.html
https://numba.pydata.org/numba-doc/latest/cuda/index.html
https://jax.readthedocs.io/en/latest/jax-101/01-jax-basics.html
https://www.lukeconibear.com/intro_ml/03_data.html#data-pipelines
https://www.tensorflow.org/guide/data

Cost

@ 1. Manage and optimise costs.

e Create cost budgets, alerts, attributions, and reports.
o Tag resources.
o # DolT
e Tips to reduce costs.
o Profile and monitor what actually use.
Stop/scale down instances/clusters when not in use (automatically if possible).
Start small on a sample of data, and scale out when ready.
For clusters, set the minimum node count to O.
Spot (preemptible) instances.
Checkpointing.
Add data retention and deletion policies.
Careful of data backups, excessive logging, cross-regional resources.

o O O O O O O

37 tomorrow..

https://www.doit.com/home/

Results

1. Initial ML exploration

° Proof-of-concept complete
(i.e., Jupyter notebooks,

sample data, CPUs, split from
in-house deployment system).
° Created operational prototype ==

(e]

§7 tomorrow..

B Refactoring, CF
conventions, Google
style

4 Ruff, Ruff
Formatter, mypy,
Cookiecutter, JFrog,
pytest, unittest.mock,
W&B, ml_collections,
Abseil

V7

2. Repeatable and reliable 3. Scalable

Automated Cost-effective
Increased to full data set. ° Reduced time, cost, and file size
Integrated with in-house by 90+%.
deployment system including o +# SnakeViz, memray,
automated pipelines. bottleneck, polars,

o +” Fully-managed ML — tf.data, mixed precision,
platform, Docker, pre-built accelerators, JIT, Joblib,
images, DevContainers, KEDA, xbitinfo-python,
Terraform, GitHub lifecycle configs, spot
Actions, pre-commit, training, DolT
Makefiles, PubSub, ° Training ~1.5 hours for CONUS
Kubernetes, cloud (~9.5 hours for Global) on 1
storage, DataDog, NVIDIA T4.

PagerDuty, Confluence ° Scalable

o Data, projects, training.

https://refactoring.guru/refactoring
https://cfconventions.org/cf-conventions/cf-conventions.html
https://cfconventions.org/cf-conventions/cf-conventions.html
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://docs.astral.sh/ruff/linter/
https://docs.astral.sh/ruff/formatter/
https://docs.astral.sh/ruff/formatter/
https://mypy.readthedocs.io/en/stable/index.html#
https://github.com/cookiecutter/cookiecutter
https://jfrog.com/help/r/jfrog-artifactory-documentation/pypi-repositories
https://docs.pytest.org/en/latest/
https://docs.python.org/3/library/unittest.mock.html
https://wandb.ai/site
https://github.com/google/ml_collections
https://abseil.io/docs/python/quickstart
https://www.docker.com/
https://containers.dev/
https://www.terraform.io/
https://github.com/features/actions
https://github.com/features/actions
https://pre-commit.com/
https://makefiletutorial.com/
https://docs.datadoghq.com/
https://support.pagerduty.com/docs/introduction
https://www.atlassian.com/software/confluence
https://jiffyclub.github.io/snakeviz/
https://bloomberg.github.io/memray/
https://github.com/pydata/bottleneck
https://pola.rs/
https://www.tensorflow.org/guide/data
https://www.lukeconibear.com/swd6_hpp/06_GPUs.html
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://joblib.readthedocs.io/en/latest/
https://keda.sh/
https://anaconda.org/conda-forge/xbitinfo-python
https://www.doit.com/home/

Summary

e Poster: Science, Ashley Payne, 29th January 2024, 3:00 PM, Hall E (100 Level).

@ e Talk: Data, Ashley Payne, 29th January 2024, 2:00 PM, 337.
y e Paper (pre-print): Operational ML post-processes system to create probabilistic forecasts.

e Towards operationalising ML weather products
o Go incrementally through phases:
m Phase 1: Initial ML exploration (manual)
m Phase 2: Repeatable and reliable (automated)
m Phase 3: Scalable (cost-effective)
o Starting small, simplifying where can, only adding what is required, only exposing decisions
need to make, and if in doubt follow good software engineering practices.

Luke Conibear (luke.conibear@tomorrow.io)

37 tomorrow..

mailto:luke.conibear@tomorrow.io
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436768
https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/436739
https://essopenarchive.org/users/671501/articles/672865-post-processing-using-deep-learning-to-create-operational-high-resolution-and-probabilistic-weather-forecasts

