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  Clouds and radiation in climate modeling

● Cloud feedbacks on climate change are 
largest driver of uncertainty in climate 
sensitivity to GHG

● Clouds have diverse, complex spatial 
structures; developing climate model 
cloud subgrid parameterizations is hard

● ML cloud parameterizations from 
coarsened fine-grid model or 
observations: Grundner et al. (2022, 
2023); Chen et al. (2023) 

● How do ML clouds behave in terms of 
atmospheric radiation?

https://earthobservatory.nasa.gov/images/76261/crepuscular-rays-india
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  ML cloud parameterization and radiation 

1. Can coarsened fine-grid model clouds produce unbiased radiation in a 
coarse-grid climate model?

2. Can an ML parameterization of cloud fields (fractional cover, cloud mixing 
ratios) produce unbiased radiation as well?
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  Models and data setup

Fine-grid reference model:

● GFDL X-SHiELD 10-day 3km resolution global 

storm-resolving simulation (e.g., Kwa et al. 2023)

● Cloud and radiation fields coarsened to 200km 

resolution

Coarse-grid ML testbed model:

● GFDL FV3GFS 200km simulation; winds, 

temperature, humidity nudged to fine-grid 

reference

Model similarities: 

● FV3 dycore, RRTMG radiation scheme, GFDL 

microphysics scheme

Model differences:

● Differences: resolution and timestep, coarse model 

has deep convection parameterization on

Fine Coarse

Free running precipitation errors: fine more accurate

Nudged-coarse radiation error against fine
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  ML fine-grid cloud and radiation 

1. Can coarsened fine-grid model clouds produce unbiased radiation in a 
coarse-grid climate model?

2. Can an ML parameterization of cloud fields (fractional cover, cloud mixing 
ratios) produce unbiased radiation as well?
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  Coarsened-fine cloud in coarse model

Use a python port of the RRTMG radiation scheme running “piggybacked” 
(diagnostically offline) with the coarse FV3GFS model, to allow for evaluating 
arbitrary cloud fields’ radiation while keeping the temperature, humidity, etc. the 
same

● i.e., “prescribe” coarsened-fine fractional cloud cover and cloud liquid and ice 
mixing ratios on the coarse model grid

● run the radiation scheme with these prescribed clouds
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  Coarsened-fine cloud in coarse model

● Coarsened-fine clouds produce ±3 W/m2 
global-mean radiation biases (upward at 
TOA + downward at sfc., for shortwave 
and longwave)

● Easily provides more skillful radiative 
fluxes than the nudged coarse model’s 
own fluxes

● BUT requires some appropriate radiation 
scheme assumptions…
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  Coarsened-fine cloud in coarse model

Overlap and fractional cover assumptions matter! 

Prescribed-cloud radiation biases sensitive to:

● Whether cloud condensate occupies entire 

horizontal area, or just fractionally cloud 

portion (latter works best)

● Cloud overlap assumption of grid cells in same 

column: Pure random? Maximally overlapped? 

Correlated within some length scale? (latter 

works best)

Prescribing coarsened-fine clouds in coarse model 

with incompatible assumptions can yield 

global-mean radiation biases, at sfc. and TOA 

relative to coarsened-find radiation, of ±15 W/m2 
(SW), ±10 W/m2 (LW)
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  ML cloud parameterization and radiation 

1. Can coarsened fine-grid model clouds produce unbiased radiation in a 
coarse-grid climate model?

2. Can an ML cloud parameterization of cloud fields (fractional cover, cloud 
mixing ratios) produce unbiased radiation as well?
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Coarse ML parameterization of fine cloud

● ML is a small gridcell-local dense neural 
network (MLP):
○ A few layers deep, about 60k parameters 

○ Inputs: coarse gridcell-local air temperature, 

pressure, and relative humidity + 

coarse-physics deep convective ice mixing 

ratio

○ Targets: coarsened-fine model gridcell-local 

fractional cloud cover, liquid and ice cloud 
mixing ratios

● ML performance:
○ Captures about 60% of variance on validation, 

exceeding nudged coarse baseline

○ Predicted cloud fields look acceptable, though 

a bit smeared out 



  Coarse ML parameterization of fine cloud

But while ML-predicted cloud 
is unbiased and reasonably 
skillful, radiation from ML 
clouds is biased (too opaque) 

Why? ML skill limitations 
with tails of distributions, 

such that very clear (and very 
cloudy) columns are too close 
to “mean cloudiness”
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  “Thresholded” ML parameterization

Apply post-processing step of zeroing out 
cloud fields where predicted fractional 
cloud cover is less than a “threshold” 
(6.5% here), to reduce radiation biases

If we could backpropagate directly 
through the radiation scheme and make 

its fluxes ML targets, this step would not 
be needed
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  Coarse ML parameterization of fine cloud

Raw ML clouds’ radiation is more skillful than coarse nudged baseline, but with 

thresholding the biases (<±3W/m2) and random errors are smaller
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  ML cloud parameterization and radiation

● Original questions:
○ Can coarsened fine-grid model clouds produce unbiased radiation in a coarse-grid climate 

model? Yes, much less biased than nudged coarse model’s radiation
○ Can an ML cloud parameterization of cloud fields (fractional cover, cloud mixing ratios) 

produce unbiased radiation as well? Yes, ML can predict coarsened-fine clouds as functions 
of coarse model state to produce less-biased radiation as well

● Suggests biases in computationally-cheap coarse climate models could be 
reduced with ML cloud parameterization

● Caveat:
○ ML cloud parameterization and radiation are computed in an “offline piggybacked” manner, 

i.e., no feedbacks with coarse model state

○ Vertically-resolved radiative heating rates would need to be sufficiently skillful to actually 

replace existing scheme in online manner
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  ML cloud parameterization and radiation 

Henn et al., “A machine learning 
parameterization of clouds in a  
coarse-resolution climate model for 
unbiased radiation”, submitted to JAMES. 
https://essopenarchive.org/doi/full/10.2254
1/essoar.169402955.59735956  

Also see my teammate Andre Perkins’ talk on 
emulating cloud microphysics in the same 
FV3GFS model later in this session
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Additional slides
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  ML cloud validation
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  ML cloud validation
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  Radiative heating rates 

20


