The Rossby Wave Source Influence on the Predictability of the MJO Response: A New Pathway of the Influence of Mid-Latitude Transients?

David M. Straus (COLA, George Mason Univ.) Daniela I. V. Domeisen (Univ. of Lausanne, ETH Zurich) Sarah-Jane Lock (ECMWF) Franco Molteni (ECMWF) Priyanka Yadav (ETH Zurich, NASA)

Intrinsic Predictability Limits arising from Indian Ocean MJO Heating: Effects on tropical and extratropical teleconnections

David M. Straus¹, Daniela I.V. Domeisen^{3,4}, Sarah-Jane Lock², Franco Molteni², and Priyanka Yadav⁴

¹Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, VA, USA
²European Centre for Medium-Range Forecasts, Reading, UK
³University of Lausanne, Lausanne, Switzerland
⁴Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Thanks to Prof. Barry Klinger (GMU) for plotting spectra.

Straus, D. M., Domeisen, D. I. V., Lock, S.-J., Molteni, F., and Yadav, P.: Intrinsic predictability limits arising from Indian Ocean Madden–Julian oscillation (MJO) heating: effects on tropical and extratropical teleconnections, *Weather Clim. Dynam.*, **4**, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023, 2023.

Intrinsic Predictability Limits of the S2S Response to the MJO

Tropical heating in general is highly intermittent in space and time

This is true even *even within a single episode of the MJO*.

The precise evolution of the heating is therefore presumably not predictable on S2S time scales.

Goal: Study the limits on predictability that are imposed by our inability to predict the precise space-time evolution of the MJO tropical heating, even if we can predict its envelope.

Discussion today: What role does uncertainty in the Rossby wave source play in limiting extra-tropical predictability?

Role of the Rossby Wave Source in the Response to the MJO

Stationary wave theory was designed to explain the time mean extra-tropical response to a time mean forcing.

It is widely used to understand the extra-tropical response to the MJO.

This assumes that the MJO heating is quasi-stationary (for ~ 10-20 days?)

The Rossby wave source was developed to help understand the time mean, extratropical barotropic response to time mean upper-level tropical divergence (a proxy for tropical heating)

Here we try to understand the predictability of the Rossby Wave Source itself by considering its evolution in time.

FIG. 2. (a) Rossby wave source S (shaded; units 10⁻¹¹ s⁻²) on day 0. The steady divergent wind vectors and the initial absolute vorticity (10⁻⁵ s⁻¹) that determine this source are also shown. (b) as in (a) but on day 48 of the fully nonlinear integration. The largest divergent winds in the subtropics are about 5 m s⁻¹.

$$S = -\overrightarrow{\nabla} \cdot \left(\overrightarrow{v}_{\chi} \zeta_{a} \right) = -D\zeta_{a} - \overrightarrow{v}_{\chi} \cdot \overrightarrow{\nabla} \zeta_{a}$$
$$S = S_{stretch} + S_{advect}$$

D = Divergence ζ_a = Absolute Vorticity \vec{v}_{χ} = divergent component of wind

The Rossby Wave Source

Sardeshmukh and Hoskins (1988) pointed out that upper-level tropical divergence alone is not enough to force stationary waves in the extra-tropics if the divergence is located in background Easterlies (which it is for phase 3 of the MJO).

The Rossby Wave Source S includes all baroclinic forcing terms in the barotropic vorticity equation. It is maximum in the subtropics, with background westerlies. It can be thought of as forcing extra-tropical stationary waves . A Model Study (ECMWF's Integrated Forecast System – IFS Cycle 43r3)

Ensemble reforecasts from MJO initial conditions (61-days)

For each initial condition, the ensemble members differ from each other only because of perturbations introduced throughout the run in the tropical Indo-Pacific region. (*The initial conditions are NOT perturbed*)

The ensemble spread is entirely due to the uncertainty in the output of the physical parameterizations in the tropical Indo-Pacific region.

Experimental Configuration

ECMWF IFS Cycle 43r3

Atmospheric Model Resolution: 36 km horiz. resolution – 91 levels up to 0.01 Pa

NEMO Ocean Model v3.4.1 (1/4 degree horiz. resolution)

INITIAL CONDITIONS (all having MJO phases 2 and 3 at initial time)

8 start dates for 1 Nov (different years), 5 start dates for 1 Jan (different years)

Reforecasts for 61 days, each with an ensemble of 51 members (so 663 reforecasts in total)

<u>Perturbations:</u> The ECMWF model incorporates stochastic perturbations to the tendencies produced by sub-grid scale processes *as an integral part of the model,* so the only change we have made is to limit the application of these perturbations to the tropical Indo-Pacific region

Start date	Ensemble size	Start date	Ensemble size
01 Nov 1986	50+1	01 Jan 1987	50+1
01 Nov 1987	50+1	01 Jan 1990	50+1
01 Nov 1990	50+1	01 Jan 1995	50+1
01 Nov 2001	50+1	01 Jan 2010	50+1
01 Nov 2002	50+1	01 Jan 2013	50+1
01 Nov 2004	50+1		
01 Nov 2011	50+1		
01 Nov 2015	50+1		
01 Nov 19812016	8+1	01 Jan 19812016	8+1

Table 1. Summary of the model runs performed for this study, for the November start dates (left) and the January start dates (right).

Figure 1. (a) Evolution of the daily mean, ensemble mean anomaly of diabatic heating anomaly Q (averaged 15° S–15° N) for days 1–60 of the 60 d experiments averaged over all experiments. (b) The evolution of the ensemble standard deviation of the daily mean heating (vertically integrated and averaged 15° S–15° N) averaged over all experiments. The abscissa gives the forecast time in days. The red lines indicate the range of longitudes over which the stochastic parametrization was applied. Units are watts per square meter (W m⁻²).

The Rossby wave source Signal

Evolution of the Two Rossby wave source components [averaged 20°N – 35°N] Averaged over all ensemble members and experiments Colors give ratio of ensemble mean to ensemble spread.

Figure A2. Evolution of the two components of the Rossby wave source (S): (a) the stretching term and (b) the advection term (as in Eq. 1), averaged over all experiments. The terms were computed at the equivalent of T21 triangular spectral truncation (see text for details). S was averaged between 20 and 35° N. The color scale gives the ratio of the ensemble mean to ensemble spread. The units of the RWS are meters per second (m s⁻¹).

shows more consistent propagation

Error Spectra of Tropical Heating

-- nearly white (flat spectrum) initially associated with localized heating error

-- Errors at largest scales grow most slowly. Even after 40 days the largest scales have not saturated.

-- some expectation that mid-latitude response most sensitive to largest scales of

Zonal wavenumber spectra of error variance in mid-level tropical diabatic heating Q_{mid}^* (avg 15S-15N). Black lines give error of 2-day averaged Q_{mid} for 1-2 days, 3-4 days, 5-6 days, 9-10 days, 19-20 days and 39-40 days. Red line gives error for days 59-60.

 $Q_{\rm mid}$ is heating averaged between 850 and 400 hPa

Predictability Times

Times at which error variance reaches a certain fraction of saturation as a function of zonal wavenumber solid lines : error variance reaches 50% of saturation dashed lines: error variance reaches 70% of saturation

dotted lines: error variance reaches 90% of saturation

Predictability Times for 200 hPa divergence both averaged 15S – 15N Predictability Times for Heating Predictability Times for S (Rossby Wave Source) Rossby Wave Source averaged 15N – 32N

Comparison of Predictability Times for the Largest Scales

-- Tropical upper-level divergence is more predictable than heating. The divergence in some sense integrates over details of the heating

-- Subtropical Rossby Wave Source is less predictable than the heating !!

-- What is limiting this predictability?

for two Individual November Forecasts 26DEC1986 21DEC1986 16DEC1986 *Storm Track 11DEC1986 6DEC1986 1DEC1986 26NOV1986 21NOV1986 16NOV1986 11NOV1986 6NOV1986 60E 6ÓW 12 15 -12 -10-26DEC2015 21DEC2015 16DEC2015 11DEC2015 6DEC2015 1DEC2015 26N0V201 21N0V2015 16N0V2015 11N0V2015 6N0V2015 60E 120E 180 120W 6ÓW

Comparison of Rossby Wave Source Colors with Storm Tracks (Contours)

indicator is deviation of meridional wind v from its 60-day time average [40N - 50N]

Rossby Wave Source averaged [20N - 35N]

Note periods for which the RWS follows the storm tracks !!!

Comparison of Rossby Wave Source Colors with Storm Tracks (Contours)

*Storm Track indicator is deviation of meridional wind v from its 60-day time average [40N – 50N]

> Rossby Wave Source averaged [20N – 35N]

Note periods for which the RWS follows the storm tracks !!!

Comparison of Rossby Wave Source with Storm Tracks Tentative Conclusions

-- The evolution of the synoptic systems in mid-latitudes seems to (at times) dominate the evolution of the Rossby Wave Source

-- Mechanism likely effect of upper-level divergence and strong divergent outflow associated with strong storms influencing the Rossby wave source

-- This is an alternative way to understand the role of transient eddies (the "noise") in limiting our predictability of the MJO response in the extra-tropics.

Current and Future Work

-- More systematically determine the relationship between the Rossby Wave Source signal and noise to storm track influence

-- Case studies to identify the precise mechanism.

Error variance of 300 hPa kinetic energy for forecast days 3, 5, 10, 20, 30 and 60

(a) High Latitudes 65N-75N
(b) Middle Latitudes 45-55N
(c) Subtropics 25-35N
(d) Tropics 15S - 15N

Spread of error from tropics to higher latitudes:

For any fixed forecast range, the error decreases as you move away from the tropics

Atmospheric Predictability of the Tropics, Middle Latitudes, and Polar Regions Explored through Global Storm-Resolving Simulations

JAS, 2020, 77, 257-276 MPAS 4 km resolution

FALKO JUDT