

Introduction

While computational resources have improved and allowed models to run at kilometer-scale resolutions on global domains, microphysics remain a major challenge. There are both difficulties in representing complex subgrid processes in parameterizations and gaps in knowledge about process rates. The sensitivity simulations doubling/halving process rates for small ice shown here are well within the range of uncertainty. We also implement a more physical ice nucleation scheme including hetero- and homogeneous freezing.¹ Other sensitivity simulations include the addition of mean ascent for a more realistic Tropical Tropopause Layer (TTL) structure.

Model

DP-SCREAM: Doubly Periodic Simple Cloud-Resolving E3SM Atmosphere Model in radiative-convective equilibrium^{2,3}

- Domain: 108 km x 108 km (doubly periodic boundary)
- Vertical resolution: 127 levs;
 - 233 m in the TTL

• Simulations length: 100 days (last 30 used in analysis) • Microphysics: Predicted Particle Properties (P3)⁴ Notes: SCREAM performs well in the GSRM version against other DYAMOND models, but tends to simulate popcorn convection.

Sensitivity Study Set-up

To answer the question "How much does microphysics matter for cirrus clouds?", we perform a sensitivity study on sedimentation rate and vapor deposition rate. We run these simulations by adding a factor of 2 or ½ to the process rate for all ice and small ice mass only (see Figure 6). We also test different ice nucleation schemes and including large scale ascent. The runs are described in the Table below. We summarize the sensitivity of each run by looking at the TOA radiative fluxes shown in Figure 1.

Name	Description
Default	Default settings for P3 in DP-SCREAM
Half dep	Vapor deposition is scaled by half for all/small ice mass
2x dep	Vapor deposition is scaled by 2x for all/small ice mass
Half sed	Sedimentation of ice is scaled by half for all/small ice mass
2x sed	Sedimentation rate of ice is scaled by 2x for all/small ice mass
New ice nuc	Ice nucleation is updated to LP2005 ¹
LS ascent	Mean slow ascent is prescribed using a mean profile of omega (from
SST304K	+4K SST prescribed (304K across domain)
SST296K	-4K SST prescribed to see if results are linear
1 km grid	Reduce the horizontal resolution from 3km to 1km

Fig. 1: Mean OLR vs SW upward radiation in W/m2 are plotted for the last 30 days of each simulation. The "small ice" sensitivity runs (squares) cluster around the default (circle). The "all ice" runs (diamonds) show a larger sensitivity to sedimentation (blue) than deposition (green). A run was done with a mean ascent prescribed to represent the BDC (purple X). The warmed and cooled SST runs are ±4K respectively (triangles) from the default 300K SST across the domain.

How Much Does Ice Microphysics Matter for Simulating Cirrus Clouds?

Sami Turbeville¹, Thomas Ackerman¹, Peter Blossey¹, Benjamin Hillman² ¹University of Washington, Seattle; ²Sandia National Laboratory

<i>w</i>)

Default 1/2x sedimentation 2x sedimentation 1/2x deposition 2x deposition 1/2x sed all 2x sed_all 1/2x dep_all 2x dep_al × LS ascent New ice nuc (LP2005) Warmed SST

↑ fall speed	↓ con	densate	•	↓ cloud fraction	
drier troposphere		Fig. 6: Flow chart showing a poss speed to increasing OLR. The cor			

