

Estimating Causal Effects of Greenland Blocking on Arctic Sea Ice Melt using Deep Learning Technique

MOTIVATION

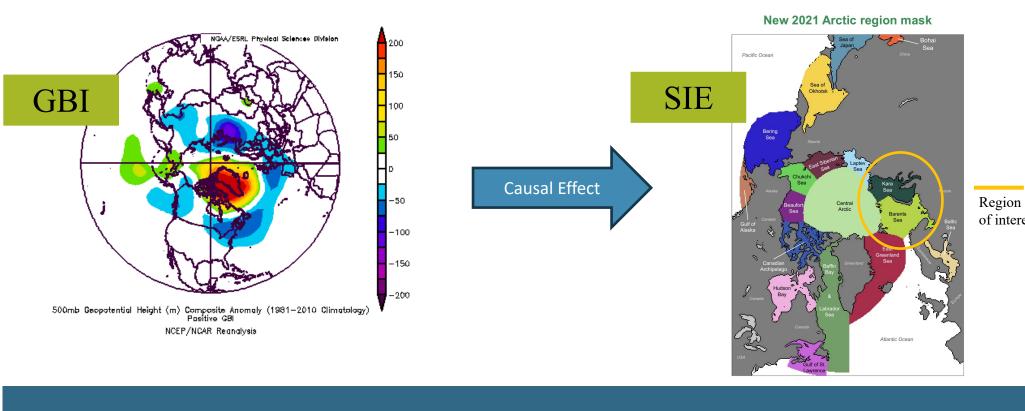
- Arctic Amplification greater climate change near the polar regions of Earth as compared to rest of the hemisphere.
- Investigate the causality between multiple atmospheric processes and sea ice variations using **data-driven approaches**.
- Pave the way for disentangling the complicated causal relationships in the Earth system, by taking the advantage of cutting-edge data science and Artificial Intelligence technologies.

PROBLEM STATEMENT

Given the data Z_t (covariates) at timestep t, we want to estimate the lagged causal effect (LATE) by forecasting observed (factual) as well as counterfactual values of sea ice, i.e. potential outcome Y_{t+l} at timestep t + l after intervening on/perturbing on certain atmospheric processes, i.e. time-varying treatment X_t

$$Y_{t+l}(X = x_t) = f(Z_t, x_t)$$
$$Y_{t+l}(\hat{X} = \hat{x}_t) = f(Z_t, \hat{x}_t)$$
$$LATE(l) = \frac{1}{N} \sum_{t=1}^{N} E[Y_{t+l}(\hat{X}_t) - Y_{t+l}(X_t)]$$

CASE STUDY



of interest

DATASET

Observational data includes 40 years of NSIDC and ERA5 reanalysis data from 1979 – 2018 in 25km resolution.

Treatment	Covariates	Outcome
Greenland Blocking Index (GBI)	Sea Surface Temperature (SST), Specific Humidity, Longwave Radiation, Shortwave Radiation, Rainfall Rate, 2m Air	Sea Ice Extent (SIE)
	Temperature	

Synthetic data includes 100,000 samples from non-linear timeseries:

 $S1_t = \cos(\frac{\iota}{10}) + \log(|S1_{t-6} - S1_{t-10}| + 1) + 0.1\varepsilon 1$

 $S1_{t-1}^{2}$

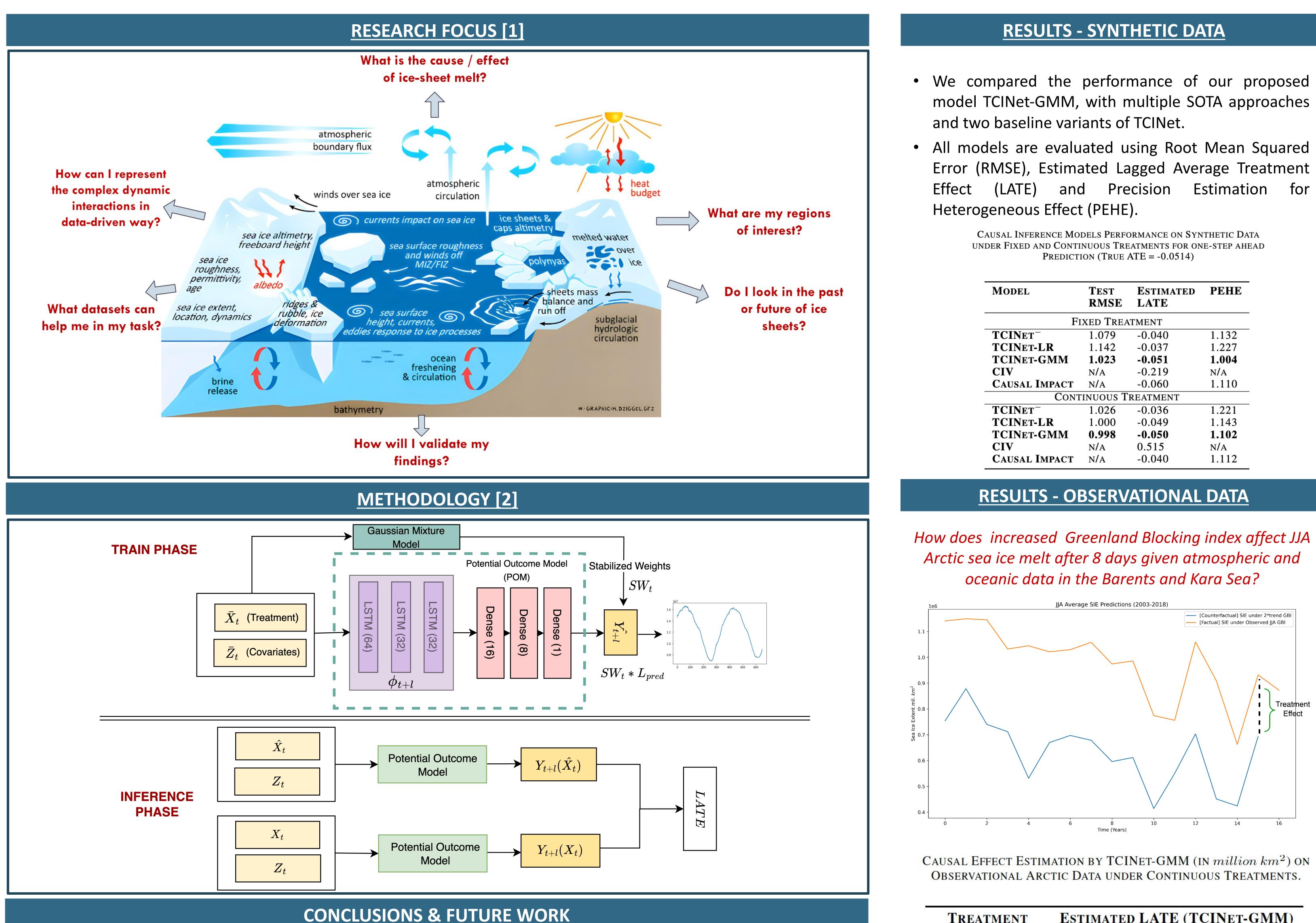
$$S2_{t} = 1.2e^{\frac{-\varepsilon-1}{2}} + \varepsilon 2$$

$$S3_{t} = -1.05e^{\frac{-S1_{t-1}^{2}}{2}} + \varepsilon 3$$

$$S4_{t} = -1.15e^{\frac{-S1_{t-1}^{2}}{2}} + 1.35e^{\frac{-S3_{t-1}^{2}}{2}} + 0.28e^{\frac{-S4_{t-1}^{2}}{2}} + \varepsilon 4$$

Sahara Ali¹, Omar Faruque¹, Yiyi Huang¹, Md. Osman Gani¹, Aneesh Subramanian², Nicole-Jeanne Schlegel³, Jianwu Wang¹

¹ Department of Information Systems, UMBC ² Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder ³ Geophysical Fluid Dynamics Laboratory, NOAA



- We demonstrate the effectiveness of our model on adjusting bias due to time-series confounding, and continuous treatment effect estimation.
- Our findings align with the literature on "increasing Greenland blocking index leads to decreasing sea ice extent" [3].
- In future, we will extend our work to spatiotemporal causal inference in presence of spatial confounders.

REFERENCES

Cardellach, Estel et al. (2018). GNSS Transpolar Earth Reflectometry exploriNg system (G-TERN): Mission concept. IEEE Access. PP. 1-1. 10.1109/ACCESS.2018.2814072. [2] Ali, Sahara et al. (2023). Quantifying Causes of Arctic Amplification via Deep Learning based Time-series Causal Inference. Accepted by IEEE International Conference on Machine Learning and Applications (ICMLA) 2023. Github: <u>https://github.com/big-data-lab-umbc/sea-ice-prediction</u> [3] Huang, Yiyi, et al. "Summertime low clouds mediate the impact of the large-scale circulation on Arctic sea ice." Communications Earth & Environment 2.1

(2021): 38.

Estimation for

MODEL	Test RMSE	ESTIMATED LATE	PEHE
Fi	XED TREA	TMENT	
TCINET ⁻	1.079	-0.040	1.132
TCINET-LR	1.142	-0.037	1.227
TCINET-GMM	1.023	-0.051	1.004
CIV	N/A	-0.219	N/A
CAUSAL IMPACT	N/A	-0.060	1.110
Cont	TINUOUS T	REATMENT	
TCINET ⁻	1.026	-0.036	1.221
TCINET-LR	1.000	-0.049	1.143
TCINET-GMM	0.998	-0.050	1.102
CIV	N/A	0.515	N/A
CAUSAL IMPACT	N/A	-0.040	1.112

TREATMENT	ESTIMATED LATE (TCINET-GMM)
40YR-AVG-GBI GBI ($2 \times$ TREND) GBI ($3 \times$ TREND) GBI ($4 \times$ TREND)	$\begin{array}{l} -0.60\ million\ km^2\\ -0.64\ million\ km^2\\ -0.65\ million\ km^2\\ -0.69\ million\ km^2 \end{array}$

ACKNOWLEDGMENTS

This work is supported by NSF grant: HDR Institute: HARP -Harnessing Data and Model Revolution in the Polar Regions (OAC-2118285). We thank Dr. Yiyi Huang (NASA Langley Research Lab) for her assistance in introducing the dataset.