
Unifying Workflows with the
Strangler Fig Pattern

Brian Weir1, Frederick Gabelmann2, Christina Holt3, Paul Madden3, Emily Carpenter3, Naureen Bharwani3
1Raytheon/EPIC

2Element 84/EPIC
3CIRES/NOAA GSL

EARTH PREDICTION INNOVATION CENTER (EPIC) 1

Introduction
● Developing any large software system is complicated, particularly supporting a

broad range of users
● Numerical weather prediction systems in particular tend to be tightly coupled and

highly labor-intensive
● Implementing changes and updating documentation even among components or

apps in a single system is difficult
● Unifying these systems systematically through a shared interface improves the user

experience and code maintainability
● A gradual approach is especially important to avoid disruptions to users and other

developers

Install

It is necessary for the
user to choose
compile-time options
and ensure that
required libraries are
installed

Edit Config

Parameters must be
added or adjusted in
any number of ASCII
configuration files

Setup

Config files must be
processed by the user
by running additional
scripts

Run

The workflow manager
if available must be
configured by the user

Given the sheer breadth of options in Numerical Weather Prediction (NWP), preparing and
configuring a model can be a laborious task

Challenges In Numerical Weather Prediction

Unifying With Structural Patterns
● Manual user input creates bottlenecks that lower task efficiency, increase risk

and affect the time required to learn a new code base
● NWP codes and even apps within a particular code base are similar in terms

of user intent, but vary notably in required interaction
● We can reduce the complexity in several ways:

a. Breaking the steps down into generic tasks
b. Identifying commonalities among configuration files
c. Maintaining useful tools with a consistent user experience
d. Preserving existing functionality without a loss of capability

Why the “Strangler Fig”?

● We could just rewrite existing code
● This entails more overhead than expected to replicate

the existing functionality and maintain both systems
during the transition

● Instead, we can incrementally migrate a legacy
system by gradually replacing specific pieces of
functionality with new applications and services.

● As features from the legacy system are replaced, the
new system eventually replaces all of the old system's
features, strangling the old system and allowing you
to decommission it.

https://learn.microsoft.com/en-us/azure/architecture/patterns/strangler-fig

Strangling Code In Existing Systems
Benefits

1. Reduces your risk when you need to update things
2. Starts immediately to give you some benefit piece by piece
3. Allows you to push your changes in small modular pieces, easier for release
4. Ensures zero down time
5. Generally more agile
6. Makes your rollbacks easier
7. Allows you to spread your development on the codebase over a longer period of time

https://developer.ibm.com/articles/cl-strangler-application-pattern-microservices-apps-t
rs/

Strangling Code In Existing Systems
Steps

1. Transform — Create a parallel new code base, but based on more modern approaches.
2. Coexist — Leave the existing code where it is for a time. Redirect from the existing code to the new one so the

functionality is implemented incrementally.
3. Eliminate — Remove the old functionality from the existing code (or simply stop maintaining it)

https://developer.ibm.com/articles/cl-strangler-application-pattern-microservices-apps-t
rs/

Now why a “Facade”?

● The facade provides a simplified
interface to complicated code

● The additional layer allows us to
implement the strangler fig pattern
without affecting the user experience

https://refactoring.guru/design-patterns/facade

Diagram of a Strangler Facade

https://www.redhat.com/architect/pros-and-cons-strangler-architecture-pattern

An Example of the Strangler Fig in Practice
● One example, simplified here, is

using decorator calls to redirect
references within the facade

● Here, the decorator allows us to not
just switch between old
(OldArtifact) and new (NewArtifact)
methods, but also run both and
compare

● We can change methods without
affecting the interface, and roll
back if necessary

https://www.kosli.com/blog/how-to-strangle-old-code-using-python-decorators/

The Strangler Fig Facade in the Unified Workflow Tools

● The Unified Workflow, following the Strangler Fig Pattern, will comprise three
essential subsystems that work together to deliver an end product given
user-defined settings
○ Configuration Subsystem

■ Responsible for ensuring proper interfaces to the Workflow Manager and standalone
tools to interface with the existing scripts for their configurations

○ Workflow Manager
■ Interface with existing workflow managers to improve compatibility across apps

○ Component Drivers
■ Replace existing run scripts

UW Tools - Component Drivers
● Each step to run a particular model configuration is specified

within the driver for that configuration
● The process can then be handled entirely by UW Tools
● The job can be run from the Command Line Interface (CLI)

without manual user commands for each step
● Additional configurations will be added later

Summary
● The Strangler Fig Pattern offers a gradual approach to refactoring, reducing

risks and enabling continuous delivery.
● The Facade Pattern plays a key role in simplifying integration between legacy

and refactored components.
● Embracing these patterns allows for a smoother transition and unification of

workflows.
● Both operations and research benefit from the consistency, flexibility and

simplicity of this pattern

