

Introduction

• The S-band fully digital planar polarimetric phased array radar (PPPAR), named Horus, was developed by the Advanced Radar Research Center at the University of Oklahoma (OU) with funding from the National Severe Storms Laboratory (NSSL) and the Office of Naval Research (Palmer et al., 2023).

- The fully digital design provides numerous advantages, including high flexibility in spatiotemporal resolution and sampling, beam agility, interference mitigation, and, in theory, software configurability.
- However, as a 2D PPPAR, Horus faces challenges in calibrating polarimetric variables to meet the requirements of weather observation (Zhang et al., 2009; Zhang et al., 2011; Palmer et al., 2023).

Active elements Inactive elements

Figure 1. Depiction of the active elements used for 5- and 13-panel measurements. The dark yellow denotes the active elements, and the lighter yellow inactive.

Table 1. Specifications relevant to the sensitivity of 5- and 13-panel Horus, and KTLX

Radar Parameters	5-panel Horus	13-panel Horus	
Frequency (GHz)	3.07	3.07	
Transmit power (kW/polarization)	3.2	8.32	
Antenna gain (dB)	26.5	31.5	
Elevation beamwidth (°)	3.3	3.3	
Azimuth beamwidth (°)	13	3.3	

Objectives of this study:

- \succ Analyze the error statistics of the weather observations.
- > Assess the quality of the polarimetric data in its current state and locate potential system deficiencies.
- Guide further system development and post processing techniques for meteorological applications.

Standard deviation from spatial and temporal samples

- The higher standard deviation stripes in Z_{DR} and ρ_{hv} are associated with the combination of non-uniform beamfilling and steering far off-broadside.

(a) Spatial

	0≤SNR	5≤SNR<10	10≤SNR<15	15≤SNR<20	20≤SNR	Theory	NOAA/NWS RFR	SNR $STD(\hat{Z}_{H})$ $STD(\hat{v}_{r})$
Z _H (dBZ)	1.31	0.62	0.87	0.63	1.31	1.31	1.8	
<i>v</i> _r (m/s)	0.41	0.43	0.39	0.31	0.39	0.46	1.0	j g g
$\sigma_{\rm v}$ (m/s)	0.41	0.53	0.38	0.30	0.39	0.31	1.0	all de la companya de
$Z_{\rm DR}$ (dB)	0.09	0.12	0.08	0.06	0.08	0.17	0.3	$\mathbf{P} = \mathbf{T}_{0} = \mathbf{P}_{10} + \mathbf{T}_{0} = \mathbf{P}_{10} + \mathbf{T}_{0} + $
$ ho_{hv}$	0.002	0.014	0.006	0.002	0.001	0.001	0.006	0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0
$arPhi_{DP}$ (°)	0.93	1.33	0.92	0.65	0.84	1.11	2.0	dB dB m/s
(b) Temporal								$\overline{\mathbf{E}} \qquad SNR \qquad STD(\hat{Z}_H) \qquad STD(\hat{v}_r)$
	0≤SNR	5≤SNR<10	10≤SNR<15	15≤SNR<20	20≤SNR	Theory	NOAA/NWS RFR	Spatia Height (
Z _H (dBZ)	1.74	0.94	1.00	0.98	1.82	1.31	1.8	k ⁽
<i>v</i> _r (m/s)	0.53	0.74	0.59	0.57	0.51	0.46	1.0	eight
$\sigma_{\rm v}$ (m/s)	0.54	0.81	0.54	0.46	0.52	0.31	1.0	F Ξ 10 20 30 40 0 10 20 30 40 0 10 20 30 Range (km) Range (km) Range (km) Range (km) Range (km)
$Z_{\rm DR}$ (dB)	0.20	0.34	0.23	0.16	0.17	0.17	0.3	0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0 dB m/s
$ ho_{ m hv}$	0.005	0.030	0.015	0.006	0.003	0.001	0.006	Figure 4. Creatical distribution of CND, and standard deviations of a
${\pmb \phi}_{DP}\left(^{\circ} ight)$	1.68	3.08	2.07	1.51	1.40	1.11	2.0	coefficient (ρ_{hv}), and differential phase shift (Φ_{DP}) for SNR larger the
Table 3. The stand	ard deviation of siz	x moments based o	on both (a) the spat	tial and (b) the temp	ooral domain of the	e Horus data for fi	ve different signal-	first row utilizes 11 spatial gates, and the second row only temporal the broadside

	0≤SNR	5≤SNR<10	10≤SNR<15	15≤SNR<20	20≤SNR	Theory	NOAA/NWS RFR	SNR $STD(\hat{Z}_{H})$ $STD(\hat{v}_{r})$
Z _H (dBZ)	1.31	0.62	0.87	0.63	1.31	1.31	1.8	R ig H is in the second
v _r (m/s)	0.41	0.43	0.39	0.31	0.39	0.46	1.0	je j
$\sigma_{ m v}$ (m/s)	0.41	0.53	0.38	0.30	0.39	0.31	1.0	dig
$Z_{\rm DR}$ (dB)	0.09	0.12	0.08	0.06	0.08	0.17	0.3	$\mathbf{P} = \mathbf{P} = \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{P} & \mathbf{P} \\ \mathbf{P} & \mathbf{P} $
$ ho_{hv}$	0.002	0.014	0.006	0.002	0.001	0.001	0.006	Range (km) Range (km) Range (km) 0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 0
$oldsymbol{\Phi}_{DP}\left(^{\circ} ight)$	0.93	1.33	0.92	0.65	0.84	1.11	2.0	dB dB m/s
b) Temporal								$= \underbrace{\widehat{E}}_{H} SNR STD(\widehat{Z}_{H}) STD(\widehat{v}_{r})$
	0≤SNR	5≤SNR<10	10≤SNR<15	15≤SNR<20	20≤SNR	Theory	NOAA/NWS RFR	Spatia Height ()
Z _H (dBZ)	1.74	0.94	1.00	0.98	1.82	1.31	1.8	
v _r (m/s)	0.53	0.74	0.59	0.57	0.51	0.46	1.0	eight eight
$\sigma_{\! m v}$ (m/s)	0.54	0.81	0.54	0.46	0.52	0.31	1.0	► ± 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 Range (km) Range (km) Range (km)
$Z_{\rm DR}$ (dB)	0.20	0.34	0.23	0.16	0.17	0.17	0.3	0 10 20 30 40 50 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.2 0.4 0.6 dB m/s
$ ho_{hv}$	0.005	0.030	0.015	0.006	0.003	0.001	0.006	Figure 4 Spatial distribution of SND and standard deviations of
$oldsymbol{\Phi}_{DP}\left(^{\circ} ight)$	1.68	3.08	2.07	1.51	1.40	1.11	2.0	coefficient (ρ_{hv}), and differential phase shift (Φ_{DP}) for SNR larger the
Table 3. The stand	lard deviation of siz	x moments based o	on both (a) the spa	tial and (b) the temp	ooral domain of the	e Horus data for fiv	ve different signal-	first row utilizes 11 spatial gates, and the second row only temporal the broadside

to-noise ratio (SNR) ranges. The NOAA/NWS RFR represents the radar functional requirements of the NOAA and National Weather Service. Th results are based on 13-panel measurements.

AMERICAN METEOROLOGICAL SOCIETY **104TH ANNUAL MEETING** 28 JANUARY-1 FEBRUARY 2024 BALTIMORE, MD & ONLINE

POSTER ID 438751

Quantitative Error Analysis of Polarimetric Phased Array Radar Measurements

Junho Ho^{1,2}, Guifu Zhang^{1,2}, Zhe Li³, Petar Bukovcic^{4,5}, Alexander Ryzhkov^{4,5}, Jidong Gao⁵, Jacob T. Carlin^{4,5}, and Jeffrey Snyder⁵

¹School of Meteorology, University of Oklahoma, Norman, OK, U.S.A. ²Advanced Radar Research Center, University of Oklahoma, Norman, OK, U.S.A. ³MathWorks, Natick, Massachusetts, U.S.A.

⁴Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, OK, U.S.A. ⁵NOAA/OAR National Severe Storms Laboratory, Norman, OK, U.S.A.

Email: jhho0626@ou.edu

• Table 3 and Figure 4 display the calculated standard deviations for each signal-to-noise ratio (SNR) range, theoretical values, and the NOAA/NWS radar functional requirements (RFR), based on spatial and temporal sampling. • The standard deviations from spatial samples exhibit lower values than those from temporal samples and theory due to the influence of spatial averaging and smoothing techniques. • The ground clutter effect, coupled with the use of a progressive pulse compression technique to remove the blind range, result in higher standard deviations at lower elevations and up to 12 km in range (Salazar Aquino et al., 2021).

Reference

- 1. Palmer, R. D., et al., IEEE Trans. on Radar Systems (2023)
- 2. Zhang, G., et al., IEEE Trans. On Geosci. and Remote Sens. (2009)
- 3. Zhang, G., et al., J. Atmos. and Oceanic Tech. (2011)

Figure 3. Spatial distribution of SNR, Z_{H} , Z_{DR} , and ρ_{hv} from Horus and KTLX measurements. The polarimetric variables are plotted for SNR larger than 10 dB. The plots on the left are based on 5-panels, and right 13-panels.

	0≤SNR	5≤SNR	10≤SNR	15≤SNR	20≤SNR
Z _H (dBZ)	4.46	4.46 4.46		4.99	5.45
	(4.17)	(4.17)	(4.39)	(4.76)	(5.13)
Z _{DR} (dB)	0.28	0.28	0.27	0.26	0.25
	(0.30)	(0.30)	(0.29)	(0.28)	(0.27)
$ ho_{ m hv}$	-0.009	-0.009	-0.01	-0.011	-0.009
	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)

Table 2. Table of the mean biases for the differences between Horus and KTLX for each signal-to-noise ratio (SNR) range.

reflectivity ($Z_{\rm H}$), radial velocity ($v_{\rm r}$), spectrum width ($\sigma_{\rm v}$), differential reflectivity ($Z_{\rm DR}$), correlation han 10 dB from Horus weather observations based on 127 timesteps on 04 October 2023. The samples. The top plot is based on 5-panels, and bottom 13-panels. The black solid lines denote

4. Li, Z.,, et al., IEEE Geosci. and Remote Sens. Letters (2021) 5. Salazar Aquino, C. M., et al., J. Atmos. And Oceanic Tech., (2021 Acknowledgement

Error statistics

Bias

- The reconstructed KTLX RHI was formed over the Horus measurement plane for comparison.
- To ensure accurate comparison, each elevation and time were carefully matched by selecting the Horus rays from the best-matching KTLX observation time for each elevation angle.
- The KTLX reconstructed RHI and Horus RHI scans were both interpolated to 10-m horizontal and 125-m vertical grids.

Standard deviation Spatial samples

As demonstrated in an earlier CPPAR data analysis (Li et al., 2021), 11 consecutive range gates were employed as shown,

$$STD(X) = \sqrt{\frac{1}{11} \sum_{m=i-5}^{i+5} (X_m - \bar{X})^2}$$

- the gate number;
- X_m the polarimetric data at gate m;
- \overline{X} the mean value of consecutive 11 gates.

Temporal samples

- Horus data provide rapid updates every 2 to 4 seconds, enabling the computation of the standard deviation of radar data from temporal samples given the assumptions of ergodicity and local stationarity
- The 127 temporal samples selected after removing abnormal time steps/stripes were used to calculate the standard deviation using

$$STD(X) = \sqrt{\frac{1}{2(N-1)} \sum_{n=1}^{N-1} |(X_{n+1} - X_n)|^2}$$

$$N \quad \text{the number of temporal samples}$$

$$X_{n+1} \quad \text{the polarimetric variables at } t_{n+1};$$

$$X_n \quad \text{the polarimetric variables at } t_n.$$

Summary

- \succ The polarimetric data quality of measurements from Horus, a 2D electronically scanning PPPAR, were analyzed.
- The mean differences and standard deviation of Horus with 5 panels and 13 panels were compared with those of a collocated operational radar. Both measurements from 5-and 13-panels matched well.
- The standard deviations using spatial and temporal samples were calculated; the radar variables from both number of panels agree well with theory and fit within the NOAA/NWS RFR for the cases examined.
- Stripes of higher standard deviation in polarimetric variables and negatively biased $\rho_{\rm hv}$ off-broadside are noticed.
- Further advancements in the Horus's design and calibration methods are in progress, and the issues identified in this study will likely be solved in the future.

This work is partially supported by the National Oceanic and Atmospheric Administration (NOAA) under Grant NA16OAR4320115 and the National Science Foundation with the grant of AGS-2136161.