

Infrared Hyperspectral Spectrometer Spectral Calibration

Owen R. McElhinney*, M. M. Coakley, K.A. Clouser MIT Lincoln Laboratory A. Krimchansky, NASA – Goddard Space Flight Center A. Heidinger, NOAA – NESDIS D.G. Johnson, NASA – Langley Research Center P. Sullivan, NOAA – NESDIS

AMS 104th Annual Meeting

February 1, 2024

* Correspondence: E-mail: Owen.McElhinney

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Dept of Commerce under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Dept of Commerce.

© 2024 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work

- Background: GeoXO constellation and GeoXO Sounder (GXS)
- GXS Level 1b data uses
- Spectral correction for NWP
- Methodology
- Analysis
- Results
- Future Work

GXS Level 1b Data Flow

- For existing NWP data assimilation to fully utilize GXS data, the GXS spectral information must be precisely captured and spectrally corrected, as needed due to instrument artifacts, onto a temporally-stable fixed spectral grid.
- GXS requirements therefore necessitate spectral stability at Level 1b for all spatial locations.
- Existing polar orbital sounder data from NASA's Atmospheric Infrared Sounder (AIRS) and NOAA's Cross-track Interferometric Sounder (CrIS) employ these types of corrections
 - AIRS L1c is corrected
 - CriS L1b is corrected to "user grid"

OM 02/01/24

- Implemented a cross-correlation based • spectral correction algorithm for hyperspectral IR sounders
 - Assumes that the SRF* width and spacing are known
 - Finds the band centers that, when applied to a MODTRAN spectrum, best match the observed data
 - Best match is defined as the center location that maximizes cross-correlation
 - Spectra from clear ocean pixels yield the most consistent results

Cross-correlation

Demonstration of Cross-Correlation Procedure

 $x\hat{x}$

 $\rho = \frac{1}{\overline{x}\overline{\hat{x}}}$

- Compared methodology to AIRS, which also uses cross correlation
- Investigated algorithm's ٠ ability to detect changes
 - Aqua spacecraft maneuvered on 9/23/21
 - AIRS band centers shifted ~ 9 ppm (0.006 cm-1)

Anomaly Detection on AIRS Data

Cross correlation clearly detects changes caused by maneuver

GXS Cross-Correlation Algorithm Implementation Geographic Refinement

- Evaluated algorithm performance in MWIR and LWIR absorption features for CrIS and AIRS over 2 years of data
 - Employed available clear pixels, which varies daily in the fixed local region
 - Removed large outliers caused by single spectral outlier point
 - Additional AIRS instrument-level effects remain

		Mean	Standard Deviation
AIRS	LWIR CO ₂	0.0033	0.0013
	MWIR H ₂ O	-0.0011	0.0012
CrIS	LWIR CO ₂	0.0016	0.0004
	MWIR H ₂ O	0.00004	0.0005

LWIR Results

- Applied algorithm to NOAA-20 CrIS and NOAA-21 CrIS to study day-to-day variability
 - Instrument data are consistent
 - Observed spread of 0.0005 cm⁻¹

- Studied the expected data spread with respect to varied levels of NEdN
 - CrIS NEdN level expected spread ~0.0003 cm⁻¹
 - AIRS NEdN level expected spread ~0.0008 cm⁻¹

 Expected spread at required GXS LWIR NEdN level is ~ 0.0008 cm⁻¹

Spectral Correction Terms		
Standard deviation after cross-correlation bias correction , where bias is detected from cross- correlation using SRFs and variety of spectral shifts relative to pre-launch baseline		cm ⁻¹
Prelaunch characterization with time/solar loading, temperature (cooling variations), and location on array provides SRFs	0.0026	cm ⁻¹
Interpolation error to new spectral grid		cm ⁻¹
Additional drift over time		cm ⁻¹
RSS for total spectral correction error from comparison	0.00326	cm ⁻¹

- GXSPORD requires 0.0034 cm⁻¹ (5 ppm) at 680 cm⁻¹ and 0.0084 cm⁻¹ at 1689 cm⁻¹
- Estimated spectral correction knowledge for a GXS using AIRS data
 - Cross-correlation method used AIRS on-orbit data
 - Prelaunch characterization is conservative (2x cross-correlation)
 - Computed interpolation error using AIRS data
 - AIRS long term drift reported to be 0.5 ppm, with separate additional seasonal variations and other events

Cross-correlation, combined with other conservative errors, gives 0.0033 cm⁻¹ and meets 0.0034 cm⁻¹ (5 ppm)

Stability Terms	Errors	
Standard deviation after cross-correlation bias correction, where bias is detected from cross-		
correlation using SRFs and variety of spectral shifts relative to pre-launch baseline	0.0013	cm ⁻¹
Any change relative to prelaunch characterization vs time/solar loading, temperature, and		
potentially location on array	0.0026	cm ⁻¹
Interpolation error to new spectral grid		cm ⁻¹
RSS for total spectral correction error from comparison	0.00306	cm ⁻¹

- GXSPORD requires 0.0034 cm⁻¹ (5 ppm) at 680 cm⁻¹
- Estimated spectral stability for a GXS using AIRS data
 - Removing drift over time from previous budget

Cross-correlation, combined with other errors, gives 4.8 ppm error and meets 5 ppm spectral stability

- Determine bias over entire array on orbit and monitor for spectral health
 - Use cold cloud-free ocean scenes to determine bias
 - Spread in correction is likely (standard deviation observed in real data)
 - Plan 30-60 minute calibrations to monitor drift, on scale of sounding disk observations
- Model spectral, spatial, temporal, and thermal sensitivities over these time scales pre-launch
- Design needed calibration algorithm corrections to include these effects
 - Bypass usage post-launch if not needed
- Characterize any spectral, spatial, temporal, and thermal sensitivities pre-launch, including TVAC, and update values in algorithms
 - Bypass usage post-launch if not needed
- Measure any spectral, spatial, temporal, and thermal sensitivities post-launch, and update values in algorithms
- Validate data on orbit with other spectral references

- Method to handle spectral calibrations for spectral smile or other spectral shifts was developed and spectral knowledge was estimated
 - Required spectral knowledge of \leq 5 ppm at 680 cm⁻¹ can be met
- Method uses a single truth spectrum is currently envisioned, with hourly corrections
 possible in algorithm using actual data
 - Required spectral stability of \leq 5 ppm at 680 cm⁻¹ can be met
- Consider refining optimal choice for a reference MODTRAN spectrum, where only bias and not spread of data is impacted
 - Bias contribution included in budgets above