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1 Motivation & scope 3 Snhow data preprocessing

It will enable actionable modeling of climate driven events,
specifically hazards and extreme weather

* There is a need to create higher-resolution versions of coarse-
resolution climate reanalysis (ERA5: 0.25%) and GCM data to
capture features that are needed for local decision making

* The problem: ERA5 snow depth (m

of water equivalent) 1s set to 10 m over

olaciated areas. This introduces a cold

bias in near-surface air temperatures 5 References and aCknOWIGdgementS

and causes instabilities in WRF

* Alaska has complex topography, so downscaling is necessary!
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2 WRF parameterization and configuration 4 Case studies: hazards & extreme weather events
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