Predicting Wildfire Fuel Moisture from Atmospheric Data Using Machine Learning

Pankaj K. Jha¹, Jeffrey D. Mirocha¹, Angel Farguell², Adam Kochanski², and Philp Cameron-Smith¹

¹Lawrence Livermore National Laboratory ²San Jose State University

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project 22-SI-008. Lawrence Livermore National Security, LLC

Extract WRF Data

200 175 🖂

125

100 Ref Sampled 75

50

25 0

500

Lawrence Livermore National Laboratory P0000000.ppt - Author - Event - Month 00, 2018

Extract WRF Data

Extracted Raw Data

	FM_time_ind	FM_ts	his_time_ind	grid_ind	j_ind	i_ind	FM_10hr	FM_100hr	HGT	U10[-8hr]	 T2[-4hr]
998	36601	2004- 03- 05_01	[36593, 36595, 36597, 36599]	155520	392	288	0.150865	0.102206	1363.334839	3.066367	 278.576202
999	36601	2004- 03- 05_01	[36593, 36595, 36597, 36599]	183608	463	260	0.153421	0.136851	1569.290771	4.593234	 275.457977
1000	113518	2012- 12- 12_23	[113510, 113512, 113514, 113516]	77031	194	207	0.187562	0.160372	26.139740	0.256508	 284.830414
1001	113518	2012- 12- 12_23	[113510, 113512, 113514, 113516]	70744	178	256	0.176889	0.141559	120.549843	-1.779185	 285.025299

Prepare Training Data

Three types of labels used:

- Actual FM (for regression models in ML)
- Binary
- Multi-class
 - Uniform-interval
 - Non-uniform interval
- Binary label defined by a threshold, i.e., FM > FM_threshold => label '0' or no risk. Otherwise, label '1'
- Multi-class (MC) labels assigned for different ranges/levels of FM

	FM_10hr	FM_100hr	FM_10hr_bin	FM_100hr_bin	FM_10hr_MC	FM_100hr_MC
0	0.119865	0.112545	0	0	3	3
1	0.171848	0.123733	0	0	5	4
2	0.230967	0.247327	0	0	7	7
3	0.167400	0.141724	0	0	5	4
4	0.143390	0.147591	0	0	4	4
99995	0.057134	0.044610	1	1	1	1
99996	0.075633	0.049422	1	1	2	1
99997	0.077075	0.043984	1	1	2	1
99998	0.156727	0.187614	0	0	5	5
99999	0.026654	0.012576	1	1	0	0

P0000000.ppt – Author – Event – Month 00, 2018

Run Machine Learning (ML) Model

```
def define model (FM label_type, model_name):
if (FM_label_type == 'Regression'):
    match model name:
        case 'Linear':
            model = LinearRegression()
        case 'SVM':
            model = SVR()
        case 'RF':
            model = RandomForestRegressor()
        case 'MLP':
            model = MLPRegressor()
        case 'GB':
            model = GradientBoostingRegressor()
elif (FM label type == 'Binary' or FM label type == 'MultiClass'):
    match model_name:
        case 'SVM':
            model = SVC()
        case 'RF':
            model = RandomForestClassifier()
        case 'MLP':
            model = MLPClassifier()
        case 'GB':
            model = GradientBoostingClassifier
```


Analyze ML Metrics

Regression

Analyze ML Metrics

Classification

	MLP	RF	SVM
15	0.88722	0.90652	0.88665
16	0.89126	0.91316	0.89239
17	0.89806	0.92023	0.89863
18	0.89778	0.91767	0.89483
19	0.89295	0.91563	0.89016
20	0.89719	0.91702	0.89648
21	0.89874	0.92103	0.89876
22	0.89367	0.91926	0.89261

Test

Lawrence Livermore National Laboratory P0000000.ppt - Author - Event - Month 00, 2018

Analyze ML Metrics

Sensitivity Analysis

Test

Lawrence Livermore National Laboratory P0000000.ppt – Author – Event – Month 00, 2018

Prediction on Prescribed Data

At desired time stamp (2018-11-08_22) and desired region

Future Work

- Study the effect of data sets and model parameters on the performance metrics
 - > Identify ways to improve accuracy on randomized test data
 - Analyze predictions at desired times and regions
 - > Continue to study the effect of features and model parameters on the accuracy of prediction
 - Study coarser fuel classes (100-hr, 1000-hr)
 - Dimensionality reduction using PCA
 - > Apply the best performing model to E3SM-RRM data for future climate assessment
 - > Examine transferring predicted FM data into risk probabilities

