
Interactive-Explanatory Geospatial Data Visualizations on the Web
Tammy Zhang1 , Nihanth Cherukuru2, David John Gagne2, Pritam Das3, Negin Sobhani2

1 Cornell University, 2 NSF National Center for Atmospheric Research, 3 University of Washington

Introduction
Interactive web visualizations make datasets directly viewable in a browser, 
allowing users to explore the data through scrolling, panning, filtering, etc.

• Researchers can quickly get general insights from their data
• Makes datasets and the stories they convey easily shareable to broad audiences

Challenges
Climate/weather datasets often:
• Are large in file size, challenging browser storage limits
• Come in varied formats that don’t naturally play well with JavaScript, 

the core language of the web
• Are rasterized in map visualizations, which limits their interactivity

Objectives
• Explore a range of popular modern open source libraries 

and approaches for creating interactive climate/weather 
data visualizations on the web

• Evaluate tradeoffs between two visualization projects that 
each used a variety of different techniques

CESM LENS2 DashboardCase 1: CESM2 LENS2 Dashboard WoFS UNet Tornado Guidance ViewerCase 2: WoFS UNet Tornado Guidance ViewerComparison

Python Server vs. 
client-side JavaScript

More customized vs.
more built-in map tiling

Native JavaScript vs.
JavaScript frameworks

Main tools used:
• D3.js
• Leaflet
• Flask (Python)

A dashboard for the NSF NCAR Community Earth System Model (CESM2) Large 
Ensemble Community Project (LENS2), a set of climate model simulations.

Main tools used:
• React
• React Plotly
• TanStack Query
• Microsoft Azure

A readaptation of a visualizer for Warn-on-Forecast tornado predictions generated 
through machine learning at NSF NCAR’s Research Applications Laboratory (RAL).

Workflow:
1.) Data acquired in NetCDF (.nc) format and stored locally
2.) Backend Python server uses the xarray library to index the dataset and return 
chunks by map tile
3.) In the frontend, D3.js constructs a rectangle for each data point to cover tiles 
continuously

Workflow:
1.) Data stored by model and init run time in a cloud object storage bucket
2.) TanStack Query makes parallel async requests for all needed datasets
3.) Requested data transformed from MessagePack format into standard JSON
4.) Passed to React Plotly for visualization 

Conclusions
• Python eliminates intermediary formats
• However, solely client-side JS is much 

easier to host and share
• More customized workflows allow for 

more room for creativity -> good for 
communicating narratives 

• More built-in workflows have faster dev 
time -> good for exploring data

• JavaScript frameworks like React have 
higher dev time but allow access to 
highly optimized data fetching libraries 
that can take advantage of datasets 
stored in the cloud


