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Introduction
Supercell thunderstorms are characterized by a deep, persistently 
rotating mesocyclone, and are well-known for their production of 
severe weather, including large hail, gusty winds, and/or tornadoes. The 
structure, intensity, severe weather production, and longevity of a 
supercell thunderstorm is heavily influenced by its surrounding 
environment. Frontal boundaries are synonymous with strongly 
heterogeneous environments and have been demonstrated to augment 
severe weather production as a result of supercell-
boundary interactions. 

The primary goal of this research is to improve our understanding of 
supercell-boundary interactions by focusing on the role of spatial 
gradients in the environment and their contributions to supercell 
evolution independent of boundary circulation.

Future Research

A random set of 7 supercell thunderstorms interacting with stationary 
boundaries were selected from an established database of tornadic 
supercells interacting with stationary boundaries. A near-inflow 
sounding representing each side of the stationary boundary was 
selected based on the timing of the first tornado report for each case.

A series of idealized simulations were run to replicate environmental 
changes a supercell experiences when traveling near or across a 
stationary boundary (see Fig. 1). This was done using Base-State 
Substitution, where changes to the base-state environment (from warm 
to cold or cold to warm; see Fig. 2) were applied at different rates to 
reflect varying boundary interaction angles. These simulations were 
carried out with the following experimental set-up:

• The simulations begin in the warm-side (cold-side) environment to 
represent a supercell forming on a certain side of a boundary

• After 60 minutes, the boundary environment is introduced to 
represent the supercell moving onto the stationary boundary

• The boundary environment is maintained for 15, 30, 45, or 60 
minutes to represent the supercell lingering on the boundary

• Once the boundary environment implementation is complete, the 
cold-side (warm-side) environment is introduced to represent the 
supercell moving off the stationary boundary
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Fig. 2: Composite skew-T, log-p diagram of all 
warm-side inflow sounding points

Fig. 3: Composite skew-T, log-p diagram of all 
cold-side inflow sounding points

Fig. 4: Composite skew-T, log-p diagram of all inflow 
sounding points to represent a boundary environment

Fig. 1: Conceptual schematic showing 
how simulations are run in relation to 
their position near the stationary 
boundary

Fig. 7: Simulated radar reflectivity (shaded) shown 
at four different times in the constant cold-side, 

warm-side, and boundary simulations (see Fig. 1)

Fig. 5: Simulated radar reflectivity (shaded) of the 
warm-to-cold side simulations. 

Fig. 6: Simulated radar reflectivity (shaded) of the 
cold-to-warm side simulations. 

• Perform a deeper analysis to better understand the supercell evolutionary paths as well as other metrics of the mesocyclone, such as 
mesocyclone depth, volume, or updraft helicity areas

• Test different residence times in the warm, cold, and boundary environments
• Keep the boundary environment residence time constant while changing the warm- and cold-side times
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• Warm-to-Cold side simulations grew 
upscale regardless of boundary residence 
time

• Cold-to-Warm side simulations retained a 
more supercellular structure throughout 
their life cycle

• The constant cold-side simulation was the 
only control simulation to maintain a 
supercellular structure


