
Background:
Cold-air damming (CAD) occurs when cold air does not have the 
energy to overcome mountains and settles at the base, creating a 
cold dome (Bailey et al., 2003)
CAD typically forms on the eastern side of the Appalachian Mountains 
and is noted by a “U” shaped pressure ridge on weather maps (Bell et 
al., 1988) 
Warm air from the Atlantic Ocean is advected inland creating a 
temperature gradient and an inversion over the cold dome (Bell et al., 
1988)  
CAD occurs during all seasons, with winter having longer and 
stronger events than other seasons (Bailey et al., 2003)
Unfortunately, there is not a lot of recent research on CAD

Even less data on CAD in the Northeast United States 

CAD and models:
Usually, models have not handled cold-air damming (CAD) very well 
with most models tending to erode CAD early.
In 1995, the Eta model failed to capture the cold pool completely and 
had errors up to 10ºC (Rogers et al., 1995)

A year later, newer updates helped the Eta capture 
more of the CAD events (Rogers et al., 1996)
In 2014, the NAM (previously the Eta) was compared to the RUC, and 
the capture of CAD was improved (Rowley, 2014)

RUC captured the spread of CAD better, and the NAM 
did better at predicting surface winds and the 
connected costal front
In 2017, the HRRR had a mean temperature bias of less than 2ºC

during CAD events with freezing rain (Ikeda et al., 2017)

Model Parameters:
A model’s coordinate system is important in determining its ability to 
predict CAD

Since the lower 2 vertical layers of the model are tied to 
topography, a sigma coordinate system may produce better 
predictions (Forbes et al., 1987)

Models need at least 3 layers of the vertical resolution below 800mb 
to resolve CAD regimes (Stauffer et al., 1987)
The height as well as the roughness of terrain is essential for CAD 
development in models

Any reduction to the terrain roughness reduces friction 
making it easier for models to overcome the blocking (Xu et 
al.,1995)

Planetary Boundary Layer schemes are a bigger factor in modeling 
CAD than microphysical schemes (Simms, 2017)
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Methodology:
Determined the dates and times where CAD took place by using 
the CADINX mathematics laid out by Miller (2014) and Strickland 
(2016)

CADINX= mean(abs(A),abs(B),abs(C))x100
Parameters: 

Units = ºC/100 km
All values must be positive to indicate occurrence of CAD

Comparison of the dates and times that have strong and middle 
values to model data

Examined the HRRR, GFS, and NAM models
Observed lead times for 12, 24, and 36 hours
Variables of interest: Onset, dissipation, and temperature 
Intensities of CAD events
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Scientific Question:

During winter 2022 and 2023, which 
forecasting model (the HRRR, GFS, or 

NAM) was able to correctly initialize and 
detect the existence of cold air damming 
events as well as predict the correct cold 

dome temperature intensity in the 
Northeast? 
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Identifying CAD:
Hourly observational 
METARs collected from 
October 2022 to March 
2023

KCON- Concord, NH
KGFL- Glens Falls, 
NY
CYSC- Sherbrooke, 
Quebec Canada
KPVD- Providence, 
RI
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Image: Map of ASOS stations where data was retrieved. (Image from Google Earth, 2014)
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