

### 1. Motivation





- Figure 1: EPA breakdown of Methane sources (202 • Methane, while not the most abundant greenhouse gas (12% of US gas emissions in 2021), is 28 times better at trapping radiation then CO2 over 100 years (EPA, 2023)
- Actual atmospheric measurements of emissions from oil and gas are 2 times the amount reported by the EPA (Alvarez et al., 2018)
- It is possible that methane has a seasonal pattern that if better understood can help in mitigation efforts and future policy

# 2. Methodology

TROPOMI (tropospheric monitoring instrument) is an instrument aboard the Sentinel 5P satellite that takes different atmospheric measurements each day



the Sentinel 5p in space (ESA, 2017)



nian Basin [shaded in light grey] in New Mexico and Texas (IEEFA, 2021

- Download data for 2018 to 2022
- Using Matlab, produce maps that show methane mole fractions in ppb for:
- Average column concentration on a seasonal timescale
- Average seasonal and Winter minus Summer column methane concentration enhancement for the Permian basin

# Does TROPOMI show a Seasonal Pattern in Methane Concentrations in the Permian Basin? Najah Israel<sup>1</sup>, Kenneth Davis<sup>2</sup>, Zachary Barkley<sup>2</sup>, Yunsong Liu<sup>2</sup> <sup>1</sup>George Mason University, <sup>2</sup>Penn State University



- LA. Houston
- Enhancements means that a background amount was subtracted from each season's average mole fraction enhancement in ppb for the Permian basin
- The background selected was a 1x1 coordinate in the middle of New Mexico that did not have any significant methane sources
- It is expected that the enhancements will be related to emissions **CH4 TROPOMI Enhancement Difference 2022** 35.0<sup>°</sup> N



When the difference between Winter and Summer is mapped, it becomes clear that during the winter the Texas portion of the Permian basin has a higher methane mole fraction by ~20-37 ppb on average in 2022

- 2022)
- needed

# results

Alvarez, R. A et al.: Assessment of methane emissions from the U.S. oil and gas supply chain, Science, https://doi.org/10.1126/science.aar7204. 2018 EPA, 2023: Overview of Greenhouse Gases. Accessed 13 June 2023, https://www.epa.gov/ghgemissions/overview-greenhouse gases#methane

ESA, 2023: TROPOMI data via NASA getdisc. Accessed 10 June 2023, https://tropomi.gesdisc.eosdis.nasa.gov/data/S5P\_TROPOMI\_Level2/S5P\_L2\_\_CH4\_\_\_\_HiR.2/

IEEFA, 2021: Pioneer, other independents top supermajor production in Permian Basin. Accessed 26 July 2023, https://ieefa.org/articles/ieefa-us-pioneer-other-independents-top-supermajor-production-permian-basi

Support for this project provided by the National Science Foundation REU program grant number AGS-1852428





### 4. Conclusion

• TROPOMI (in 2022) shows a pattern of methane mole fractions increasing from spring to winter in the Texas portion of the Permian basin • This pattern is seen across multiple years (2019-

• It is possible that this difference in pattern between the New Mexico and Texas portion of the basin is due to differences in state regulations, but further research would be

### 5. Future Work

Compare bottom-up inventories to TROPOMI

• Figure out if the difference in patterns across state boundaries is due to policy by looking at other basins in each state



ESA, 2017: Sentinel 5p Operations. Accessed 14 June 2023, https://www.esa.int/Enabling\_Support/Operations/Sentinel-5P\_operations

# 7. Acknowledgments

# 8. Appendix

Scan QR code to see figures from 2019-2022