NOAA EO-DT (Earth Observations – Digital Twin)

PIs: Patrick McBride, Jeff Steward
Contributors: John Furlong, Ryan Kelly, Rachel Stutz, Jeremy Highley, Russell Cox, Ryan Nguyen
Program Manager: Jeff Campbell, Katie Nyland
Portfolio Lead: Junk Wilson

February 1, 2024

Earth Observation Digital Twin

Earth Observation Digital Twin

WHAT IS A DIGITAL TWIN?

Driven by high-performance computing, advanced Earth-system simulations are fused with a continuous flow of observations to create the most accurate digital replica.

The replica includes water, energy, food and health components to link the physical with the human world.

This allows us to revisit the past, understand and explain change, and predict the future in support of decision making. **DIGITAL TWIN** Computer model

PHYSICAL WORLD

Planet Earth

CECMWF

Digital Twin – unifying vision

- What is a digital twin?
- Visualization engine/platform
- What now?
 - Current best estimate of the system (Observations and models)
- What next?
 - Forecast of the system
- What if?
 - Interactive exploratory scenario planning
- Computational infrastructure:
 - AI/ML, cloud compute
 - Data fusion and assimilation, OSSE
 - Support decision making, analysis, and other user applications

- NOAA Global Forecast System (GFS) weather model
 - Full globe, 0.25° resolution data for dozens of variables
 - Viewing: surface temperature on 9/10/23

- JPSS NOAA-20 Cross-track Infrared Sounder (CrIS)
 - Swaths of atmospheric temperature and moisture data
 - Viewing: brightness temperature from ch. 551 (992.5cm⁻¹) on 1/9/23

- NOAA/NSDIC Sea Ice Concentration data products
 - Northern hemisphere only with data masked out over land
 - Viewing: sea ice concentration 1/1/23

AI/ML

• The role of AI/ML in NWP

V&V to assure science

• Graphic from "Can deep

learning beat numerical

weather prediction?" Schultz

https://royalsocietypublishin

g.org/doi/10.1098/rsta.2020

community

et al 2021

.0097

Multiple areas for inclusion

Need fundamental research,

OSS Program and Business Proprietary

Sea Ice + ATMS + CrIS Paired Data

Sea Ice Concentration – Training Labels

Sea Ice Data on January 1st, 2023 In the Northern Hemisphere (Stereographic Projection Coordinates)

Model trained and tested on this day of data. The train set consists of samples with negative longitude and test set consists of samples with positive longitude.

Sea Ice Concentration (With Ocean Masking) 1e6 6 4. 0.8 Projection Coordinate 2 -0.6 0 0.4 -2 0.2 -4

X - Projection Coordinate

1e6

Sea Ice Model Structure

Sea Ice Model Output

Sea Ice Model Output

Sea Ice Model Ground Truth Data – Visualization

- NOAA/NSDIC Sea Ice Concentration data
 - Source: <u>https://nsidc.org/data/g02</u> <u>202/versions/4</u>
 - Concentration ranges from 0 (purple) to 1 (green/yellow)

Sea Ice Model Ground Truth Data – Visualization

What if?

• Create a hypothetical situation, run it, visualize it. User interactive.

- Example: run model potentially many times with different inputs, use variety in outputs to quantify uncertainty or compare experiments
- Compute: many nodes w/ MPI
 - Ideal solution: start a job from within the digital twin, monitor progress, visualize/analyze/download output

Running Models on Clusters

- Integrate Parallel Works REST API into our existing node.js server
 - Provision, start, and stop clusters in the cloud on AWS, Azure, GCP, or on-prem
 - Create and execute workflows to run on the clusters
 - Real time monitoring on the frontend achieved by polling the PW endpoint for job status
 - Workflow outputs available for download from the AWS S3 Bucket
 - Users can download from frontend available once workflow polling succeeds
 - Or users can download using AWS CLI using their group's credentials
 - Initial workflow executes initialization run of TIE-GCM 2.0

Running Models on Clusters

End-to-End Workflow Submission

- Run multi-node SLURM ensemble
 - o Implement the model using singularity containers, executed using mpi
 - \circ $\,$ Each compute node runs an instance of TIE-GCM $\,$
 - Input values are perturbed for each simulation using a python script (truncated normal distribution)
 - Compute nodes: c5n.2xlarge (8 vCPUs, 21 GB RAM amd64)
 - Submit TIE-GCM Workflow from UI
 - Node.js server will start the cluster if not already on
 - Submit the workflow to run on cluster once active
 - Poll the workflow job from frontend to monitor status
 - Once complete, the workflow script will export outputs to AWS S3 Bucket
 - On polling success, show output on frontend as list of result filenames
 - Click to download from S3 Bucket

Running Models on Clusters

TIE-GCM

- Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) output
 - Physics-based model at 5° resolution
 - Viewing: total electron content (TEC) on 10/10/23

Parallel Works Integration – Visualization

- When a model run finishes, get it from the S3 bucket using the job ID and process the file for visualization
 - Using boto3 python library to access S3 buckets provisioned via PW
 - Secondary history files (sech) include the data we are interested in
 - Can do this for each ensemble member if we do an ensemble run

TIE-GCM ensemble run outputs found for job ID 00410: mem001: tiegcm2.0_res5.0_mareqx_smin_prim_001.nc mem001: tiegcm2.0_res5.0_mareqx_smin_sech_001.nc mem002: tiegcm2.0_res5.0_mareqx_smin_sech_001.nc mem003: tiegcm2.0_res5.0_mareqx_smin_prim_001.nc mem003: tiegcm2.0_res5.0_mareqx_smin_sech_001.nc mem003: tiegcm2.0_res5.0_mareqx_smin_sech_001.nc Downloaded model-outputs/tiegcm/tiegcm2.0/ens/00410/mem001/tiegcm2.0_res5.0_mareqx_smin_sech_001.nc

What if Exploration: Visualization

TIE-GCM TEC (Total Electron Content) from one member of an ensemble run

What if Exploration: Visualization

- Difference between two runs of TIE-GCM with perturbed solar drivers
 - SWPC-posted F10.7 and Kp for the time of the run were each multiplied by 1.1 and 0.9

What if Exploration: Visualization

• Difference between two runs of TIE-GCM with perturbed solar drivers

SPACE

An Arcfield Comp

• Percent difference from average value at each location reached 25%

Data Pipeline using Mage.ai

get_remote Data loader	e_files_gfs	get_local Data loade	r v
РҮ		РҮ	
PY	_list es_gfs		
PY			
	purge_expire	d_files_gfs	
PY			
	delete_empty	_directories	
PY			

- Mage has built-in capability to connect to data storage locations such as AWS S3 buckets
- We are maintaining a database with a rolling window of data on Terry13
 - Window varies based on size of data from each instrument, from 24 hours (CrIS/ATMS) to 30 days (SEISS)

Data Pipeline using Mage.ai

//	odtdat	apipeline > Pipe	lines				17:10 UTC	v0.9.41 Upd	<mark>ate</mark> 👫 Live he	lp 🛃
	+	New 🖓 Filter	Group	Q						
ኤ		Status	Name	Description 🗐	dated at	Created at	Tags	Blocks	Triggers	
Ş	11	active	gfs_0p25_analysis	NWS Global Forecast System 0.25 Degree Analysis Data	GFS 23-10-26 17:17:25		GFS	6	1	60
	11	active	jpss_snpp_cris_fs_sdr	JPSS SNPP Cross Track Infrared Sounder Full Science Sensor Data Record	Standard 2023-08-25 21:00:10	-	Cris JPSS SNPP	6	1	60
\bigotimes	11	active	jpss_snpp_atms_sdr_geo	JPSS SNPP Advanced Technology Microwave Sounder Scientific Radiance	SNPP (Cris ATMS)	-	ATMS JPSS SNPP	6	1	60
E	11	active	jpss_snpp_atms_tdr	JPSS SNPP Advanced Technology Microwave Sounder Antenna Temperature	Standard 2023-08-25 21:00:10	-	ATMS JPSS SNPP	+ GOE	S-16, S-17	60
80 A :	11	active	jpss_noaa21_cris_fs_sdr	JPSS NOAA-21 Cross Track Infrared Sounder Full Science Sensor Data Record	Standard 2023-10-02 22:46:25	-	CrIS JPSS NOAA-21	GOL	ES-18	60
4	11	active	jpss_noaa21_atms_sdr_geo	JPSS NOAA-21 Advanced Technology Microwave Sounder Scientific Radiance	(CrIS. ATMS)	-	ATMS JPSS NOAA-21	(ABI, S	EISS)	60
	11	active	jpss_noaa21_atms_tdr	JPSS NOAA-21 Advanced Technology Microwave Sounder Antenna Temperature	Standard 2023-08-25 21:00:10	-	ATMS JPSS NOAA-21	6	1	60
	11	active	jpss_noaa20_cris_fs_sdr	JPSS NOAA-20 Cross Track Infrared Sounder Full Science Sensor Data Record	NOAA-20	-	CrIS JPSS NOAA-20	6	1	60
	11	active	jpss_noaa20_atms_sdr_geo	JPSS NOAA-20 Advanced Technology Microwave Sounder Scientific Radiance	(CrIS, ATMS)	-	ATMS JPSS NOAA-20	6	1	60

Time Slider

The user can visualize multiple tilesets for a given dataset generated over a range of time

TIE-GCM total density output at 15-minute intervals over a 3-hour period on 12/7/23

EO-DT: Final thoughts

- Work done to support NOAA's prototype EO-DT effort
- What now, what next, and what if capabilities to visualize, analyze, explain, and predict the earth system model
- Place AI/ML on even-footing with traditional models, support validation and verification efforts
- Incorporate cloud-based computing with on-prem using same workflows on AWS, Azure, GCP, etc. Avoid vendor lock-in.
- Accelerate the speed of science and R2O2R, what if exploration
- Enable decision makers utilize best available info in real-time

NOAA

TMENT OF

OSS Program and Business Proprietary