
● RMSE patterns show clear increases with lead time, with minimum values occurring between 1-3 hours of assimilation (Fig. 2-3).

● Storms of higher mean intensity display a relatively large northeasterly bias (Fig. 4), suggesting that the WoFS may underpredict deviant motion in rotating storms, 
particularly in cyclonic supercellular storms intensifying and veering to the right (in the Northern Hemisphere) as documented in previous studies (Stratman et al. 
2018, MWR) and subjective assessments (Skinner et al. 2018, WAF).

● Storms with the lowest mean intensities demonstrate southeasterly biases of smaller magnitude (Fig. 4), possibly linked to imperfect cell filtering or the presence of a 
broader trend inclusive of storm cells.

● Little variance in bias and RMSE were found between the years of study, as well as between ensemble members and planetary boundary layer schemes.

● Methodological improvements are needed, particularly in refining the cell classification approach and considering alternative matching strategies after cell filtering to 
avoid potential erroneous object matching.

● Future studies could explore SDEs in relation to geographical factors, topography, and terrain, as well as examine directional bias patterns and RMSE values in 
storms with irregular propagation directions and varying forward speeds.

● Higher mean intensity storms show larger northeasterly biases.

● Storms with both shorter lead times and higher mean intensities 
have smaller RMSE values, which makes sense in part because a 
storm is likely to have been well-assimilated by the time it reaches a 
high intensity.

● There is a clockwise shift from southeasterly to northwesterly 
biases in the [0,15) minutes lead time interval as mean intensity 
increases. Larger lead times see a counterclockwise southeasterly 
to northeasterly shift as mean intensity increases, nearly 
disappearing for the east-southeast direction.

● Storms with lower mean intensities have notable southeasterly 
biases, but biases and RMSEs at the smallest mean intensity 
interval (39-41dBZ) remain disproportionately large, potentially 
indicating the presence of some MCSs surviving data filtering.

● Similar patterns in bias and RMSE are identified for maximum 
intensity using a heat and vector map.

Summary and Discussion

Data

Methods

Motivation and Background

● The WoFS employs 36 ensemble members for data assimilation and 18 members for 
forecasts, generating forecasts with 3-km horizontal grid spacing over a 900 x 900-km 
square domain (Heinselman et al. 2023, WAF).

● The WoFS produces ensemble forecasts every 30 minutes with lead times up to 6 hours 
and output in 5-minute increments, utilizing ensemble analyses initialized every 15 
minutes from the assimilation of various observations, such as radar, satellite, and 
conventional data.

● To assess SDEs, forecast composite reflectivity (based on the maximum reflectivity in a 
model column) is used and verified against the composite reflectivity field from the 
Multi-Radar Multi-Sensor System (MRMS; Smith et al. 2016, BAMS).

● Object-based analysis is utilized to identify storm objects in WoFS and MRMS composite 
reflectivity fields using criteria such as intensity and area size. WoFS and MRMS storm 
objects are matched at each forecast output time using Total Interest (TI) scores (Guerra 
et al. 2022, WAF), with SDEs quantified as differences in storm object centroid locations 
between WoFS/MRMS object pairs (Skinner et al. 2018, WAF).

● Only discrete storm cells with generally more distinct and consistent SDE patterns will be 
examined (Fig. 1a). This eliminates potential discrepancies between cellular and 
quasi-linear convective system/other non-cellular behavior (Fig. 1b).

● This study narrows its focus to storm objects with lead times of less than 3 hours to 
improve predictability and reduce uncertainty.

● Cell-like objects are isolated using a maximum area threshold of 5000 km2 and Potvin et 
al.'s (2022, JTECH) cell classification technique, resulting in 2,451,246 matched pairs of 
cell-like objects for further analysis.

● Root-mean-square error (RMSE) and bias are used to measure SDEs.

● Subjects of interest include yearly variations, differences across forecast ensemble 

● members and their PBL schemes, lead time, relative storm age (RSA) and mean intensity.
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● The unspecificity of watches and limited lead time of warnings can impact the 
preparedness of vulnerable populations, putting them at an increased risk.

● The Warn-on-Forecast System (WoFS; Heinselman et al. 2023, WAF) is a rapidly 
updating ensemble data assimilation and prediction system providing convective-scale 
forecast output, which allows for localized severe weather alerts with longer lead times 
(Stensrud et al. 2009, BAMS; Stensrud et al. 2013, AR).

● WoFS has notable storm displacement errors (SDEs; Britt et al. 2023, WAF; Flora et al. 
2019, WAF; Skinner et al. 2018, WAF) that affect forecast accuracy, potentially leading to 
suboptimal data assimilation and larger errors in successive forecasts (Stratman et al. 
2018, MWR; Stratman and Potvin 2022, MWR).

● Identify and describe patterns in these SDEs to enhance WoFS accuracy and give 
forecasters a basis for manual SDE correction or compensation.

● RMSE clearly increases with lead time for a given RSA.

● For lead times of <90 minutes, there is a striking decrease in RMSE with increasing RSA 
for assimilated storms. The minimum RMSE range occurs between RSAs of 60 and 180 
minutes (Fig. 2). 

● There is a delayed minimum RMSE range for lead time intervals of [120,180) minutes, 
occurring between RSAs of 120 and 240 minutes (Fig. 2).

● RMSE increases near-monotonically with RSA beyond RMSE minimums; the oldest 
storms have higher RMSE values despite having the most time to be well-assimilated. 
However, for lead time intervals of less than 60 minutes, universal RMSE maximums occur 
for storms with the smallest RSAs (Fig. 2).

● Absolute RMSE minimums for RSAs between 30 and 210 minutes at lead times less than 
15 minutes. Larger biases occur primarily after assimilation, with the largest RMSEs found 
at the largest RSAs and the longest lead times (Fig. 3).

● Well-assimilated storms see a generally increasing southeasterly to easterly bias with 
increasing lead time, except for the [0,15)-minute interval, which shows a clear 
southwesterly bias.

 

LEAD TIME AND RELATIVE STORM AGE LEAD TIME AND OBSERVED MEAN INTENSITY

● the findings contribute to enhancing WoFS accuracy and providing context for 
end users to understand and compensate for model errors in short-term 
forecasts.
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Figure 4. Storm cell displacement errors by MRMS mean intensity and 
lead time (2017-2020). A color scale represents RMSE while vector 

direction and magnitude correspond to bias.

Figure 3. Storm cell displacement errors by RSA and lead 
time (2017-2020). A color scale represents RMSE while 

vector direction and magnitude correspond to bias.

Figure 2. Mean RMSE with respect to RSA and lead 
time intervals with a rolling mean window of 10 

minutes (2017-2020).

Figure 1. Example of (a) a 
standard storm cell reflectivity 
signature and (b) a typical QLCS 
reflectivity signature. Adapted 
from Potvin et al. (2022).

(a) (b)
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