Abstract

Harmful algal blooms (HABs) in freshwater systems are being exacerbated due to climate change and
pose significant ecological and human health risks, thus necessitating effective monitoring and
management strategies. Traditional ground-based monitoring methods are limited by high cost, labor
intensiveness, site-specificity and unforeseen disruptions such as the COVID-19 pandemic. In this study,
we propose a remote sensing approach to address these challenges, enabling cost-effective and
continuous monitoring of HABs in more than 35 lakes around New York State leveraging the existing in-
situ data from various monitoring programs. We test four different algorithms derived from band
relationships to obtain chlorophyll-A (Chl-a) as a proxy for HABs presence on Sentinel-2 Multispectral
Instrument (S2-MSI) Surface Reflectance (SR) data. There was a large range in formula accuracy; however,
all exhibited ample error, leading us to incorporate different machine learning techniques into an
expanded study of several large lakes in NY State, including Lake Champlain. Various S2-SR bands were
examined as features and their importance was estimated using the in-situ data. The best-performing
algorithm for Lake Champlain, our test region, Gradient Boosting, performed better than others with
R"2=0.85. This approach addresses the need for effective regional HABs detection and monitoring in
freshwater systems through the incorporation of remote sensing and machine learning techniques.

Background

e Algae, cyanobacteria, and phytoplankton are simple organisms
found worldwide, capable of blooming uncontrollably and
producing toxins, leading to harmful algal blooms (HABs)

e Factors contributing to HABs include slow-moving water,
sunlight, and excessive nutrients/fertilizer from runoff

e Other than producing toxins, HABs can cause eutrophication
and hypoxia, negatively impacting many species and aquatic
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e Climate change and landcover changes exacerbate HAB =
frequently and severity

e Accurate identification and prediction of HABs in local water sources
are essential.

e Current methods involve expensive and time-consuming field studies
to collect samples and assess the danger of algal masses.

* Novel approaches, such as satellite sensing and machine learning, are
being developed alongside fieldwork to optimize HABs identification
and warning systems.

Methods

¥ Lakes Stations

I. Find in-situ data
iil. Research algorithms A
iii. Evaluate Chl-A algorithms for Cayuga Lake |
iv. Expand lake dataset to other NY lakes

v. Incorporate machine learning; try several
methods

iv. Compile analytics on ML algorithm &
formula accuracies
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Time Series of Normalized Chl-a from Stations
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Conclusions

e HAB concentration does not follow a linear relationship

* Traditional ground-based monitoring methods have limitations, including high cost, labor intensity, site-
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Results
Mean Reflectance Values 2019 HAB season
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Discussion

* Mixing in-situ data from different sources is likely to lower final R*2 and accuracy
While adding more lake in-situ data reduces the R"2, combining data from multiple sources can lead to error
as there are different methods of data collection (volunteer sampling vs. consistent station monitoring)

Use MPI4Py/parallel computing to speed up reflectance retrieval

Future Work

Expand set of lakes to include NJ, PA, VT & other states
Incorporate near-real-time in-situ data for more accurate and consistent data

Create opportunities for collaboration between CCRI and CSLAP HAB researchers
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