
11.5
ICING RISK LEVEL DERIVED FROM GLOBAL/REGIONAL ICING POTENTIAL
AND OCCURRENCE PROBABILITY

Yin-lam NG1,*, Kin-chung AU-YEUNG1, CHONG Pui Lam, Ivan2, Monique Zoe WAH3, Wang CHOW1

1Hong Kong Observatory, Hong Kong, China
2Chinese University of Hong Kong

3Hong Kong University of Science and Technology

1. INTRODUCTION

Aircraft icing is the accretion of supercooled liquid
onto an airplane during flight. Meteorologists, aerospace
engineers, and pilots need and want information about
airframe icing because it can adversely affect the flight
performance of an aircraft. Icing can increase drag,
decrease lift, and cause control problems. The added
weight of the accreted ice is generally a factor only for
light aircraft.

Certified aircraft are commonly equipped with devices
that either prevent ice from adhering to the airframe or
remove it once it has adhered. Such anti-icing or
de-icing equipment may be deployed manually or
through an automatic system triggered by an icing
detection probe.

Icing is usually classified into four severity categories:
trace, light, moderate, and severe. Severity reported
depends on the state of the icing environment, the
aircraft’s response, and the pilot’s assessment of the
response.

The Forecast Icing Potential (FIP) algorithm was
developed at the National Center for Atmospheric
Research under the Federal Aviation Administration’s
Aviation Weather Research Program. It uses 20-km
resolution Rapid Update Cycle (RUC) model output to
determine the potential for in-flight aircraft icing
conditions and supercooled large drops (SLD; defined
as droplets with diameters greater than 50µm). FIP
combines the model input data using fuzzy logic
membership functions and a decision tree to estimate
the potential for icing. The membership functions are
based on cloud physics principles, forecasting and
research experience, and comparison of fields to icing
pilot reports (PIREPs). They map data onto a 0-1 scale,
which represents the expected likelihood of icing, given
the value from that field (McDonough et al. 2004).

2. DATA

2.1. Observations

Icing reports by pilots are treated as the ground truth
of areas with icing encounters. Locations with no icing
encountered would also be needed for verification or
constructing models to predict icing occurrence
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probability, so that they could learn how to distinguish
potential icing areas. However, areas with no icing
reports do not guarantee the locations are not icing
favourable, it could simply because no flights happened
to have passed through the areas. In this study,
locations with Civil Aviation Administration of China pilot
reports (CAAC PIREPs) indicating light turbulence and
null icing are considered as areas with no icing threats.
The amount of bias introduced due to samples being
only taken along common flight paths is considered to be
negligible for developing meteorological products, which
are aimed to aid aviation operations.

1) CIVIL AVIATION ADMINISTRATION OF CHINA

PILOT REPORTS (CAAC PIREPS)

CAAC PIREPs during the period January 2019 to
October 2023 have been collected for the study. They
are pilot reports provided by the Civil Aviation
Administration of China with turbulence or icing events
location, height, time and intensity. Intensity is reported
on a scale of 1–5 and 0 indicated no encounter. All icing
PIREPs (i.e. intensity being 1–5) are used for this study,
while turbulence report (with no icing encountered) with
intensity 1–2 (i.e. light turbulence) are randomly selected
as null icing reports. Reports with light turbulence and
icing would be considered as icing reports. Turbulence
reports are randomly selected such that the number of
turbulence with no icing encountered and icing events is
roughly 1:1 for this study.

2) SPECIAL AIR REPORTS (ARS)

To enlarge the observation data set, ARS on icing
events during January 2021 to June 2023 are also
collected from the World Meteorological Organization
(WMO) Information System (WIS) at the Tokyo Global
Information System Centre (GISC) for this study. Only
"light/ moderate/ severe" would be reported by icing
ARS. Based on the proportion of intensity reported, icing
ARS are considered to be equivalent to CAAC PIREPs
intensities: light = 1–2, moderate = 3, severe = 4–5.

2.2. Numerical Weather Prediction (NWP) model

1) GLOBAL NWP MODEL

The high resolution model by the European Centre for
Medium-Range Weather Forecasts (ECMWF) has been
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used to construct forecast icing potential. Parameters
including temperature (T), relative humidity (RH), and
vertical velocity (w - negative indicates updraft) for
calculating FIP are available at pressure levels [950 hPa,
925 hPa, 900 hPa, 850 hPa, 800 hPa, 700 hPa, 600 hPa,
500 hPa, 400 hPa, 300 hPa, 250 hPa, 200 hPa].

2) REGIONAL NWP MODEL

The Hong Kong Observatory (HKO) has been running
the HKO-WRF (Hon 2020), a large-area mesoscale
NWP model covering the Asian Pacific region and
supporting regional aviation applications, which has
been demonstrated to possess positive skill in clear air
turbulence (Hon et al. 2020) and ice crystal icing (Ng
et al. 2017).

3. FORECAST ICING POTENTIAL (FIP)

With reference to McDonough et al. (2004) while
adjusting slightly to fit the meteorological conditions for
icing in this region, clouds are defined as RH≥ 80%. If a
layer in an air column has thickness ≥ 75 hPa and
RH< 50%, it is considered as a dry slot between cloud
layers in that column of atmosphere. Cloud top
temperature (CTT in K) is defined as the temperature of
the nearest cloud top layer. An illustration is shown in
Figure 1.

FIG. 1. Defining cloud layer(s) for each point of interest
(a column of atmosphere).

Using membership functions to map the T, CTT and RH
to Tmap, CTTmap and RHmap respectively, FIP (FIPfinal) is
calculated as follow:

FIPinitial = Tmap ×CTTmap ×RHmap

If w ≥ 0, FIPfinal = FIPinitial +wmap (1−FIPinitial)

If w < 0, FIPfinal = FIPinitial −wmap (FIPinitial)

3.1. FIP derived from global NWP model

Based on the locations of the PIREP, nearest grid
points in ECMWF model data were identified as points of
interest. The distributions of each ECMWF model
elements (T, RH, CTT, w) were plotted in Figure 2. Note
that there were only 4.5% points of interest were cloud
free with the above-described definition of cloud layers.
Based on McDonough et al. (2004), NCAR membership
functions were given in red. It is observed that CTT and
w histograms were not as well represented by NCAR
membership functions in this region. All four
membership functions for calculating FIP from ECMWF
parameters were adjusted based on CAAC PIREP and
shown in dandelion.

FIG. 2. Distributions of model elements extracted from
CAAC PIREP points of interest with lines showing NCAR
membership functions (red) and adjusted membership
functions for ECMWF (dandelion).

3.2. FIP derived from regional NWP model

Similarly, nearest grid points associated with PIREP
locations in HKO-WRF model data were identified as
points of interest. The distributions of each HKO-WRF
model elements (T, RH, CTT, w) were plotted in Figure 3.
All four membership functions for calculating FIP from
HKO-WRF parameters were adjusted based on CAAC
PIREP and shown in pink.

4. ICING OCCURRENCE PROBABILITY

Ng (2023) compared three types of machines learning
models to forecast icing occurrence or icing severity.
Icing occurrence probability predicted by eXtreme
Gradient Boosting (XGBoost) was found to be the most
accurate prediction. XGBoost Python package was used
to construct XGBoost model for icing occurrence (no
icing vs icing) probability. XGBoost is a scalable
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FIG. 3. Distributions of model elements extracted from
CAAC PIREP points of interest with lines showing
NCAR membership functions (red), adjusted membership
functions for ECMWF (dandelion) and HKO-WRF (pink).

end-to-end tree boosting system developed by Chen and
Guestrin (2016) which used different regularisation
penalties to avoid overfitting. Chen and Guestrin (2016)
also showed their system runs more than ten times
faster than existing popular solutions on a single
machine.

5. ICING RISK LEVEL

Figure 4 and Figure 5 showed boxplot for ECMWF FIP
and icing occurrence probabilities against PIREP/ARS
reported icing severity. The linear trends across icing
severity were not statistically significant.

FIG. 4. ECMWF FIP plotted against PIREP/ARS
reported icing severity.

FIP only considered the parameters T, CTT, RH and

FIG. 5. Icing occurrence probabilities by three machine
learning models (Ng 2023) plotted against PIREP/ARS
reported icing severity.

w; while icing occurrence probability took into account for
T, RH, w, divergence, geopotential height, potential
vorticity, specific humidity, U-component of wind,
V -component of wind, and vorticity (relative). With
meteorological conditions given by FIP and probability
quantified by icing occurrence probability available, it is
possible to multiply them together as icing risk level and
construct an icing risk matrix (Table 1).

Probability (Occurrence)

Risk

Unlikely Probable Likely

Po
te

nt
ia

l(
FI

P
) High

Medium

Low

TABLE 1. An illustration of icing risk matrix

As described in Ng (2023), two XGBoost models were
fitted for ECMWF parameters based on CAAC PIREP or
CAAC PIREP together with ARS. Similarly, two XGBoost
models were fitted for HKO-WRF parameters. A total of
four icing occurrence probabilities would be looked at in
this study for constructing icing risk levels.

6. RESULTS

Several statistical analyses were done, including
receiver operating characteristic curve (ROC curve),
area under the ROC curve (AUC), hypothesis testings on
linear trend across icing severity, and Analysis of
Variance (ANOVA).
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Thresholds for yes/no icing, moderate or above icing
and severe icing were investigated. However, the
amount of severe icing reports was too scarce for
drawing meaningful conclusion. Therefore, results for
yes/no icing and moderate or above icing would be
presented. Based on the best thresholds, probability of
detection (POD), false alarm ratio (FAR), and critical
success index (CSI) were calculated for comparison.

6.1. FIP

1) GLOBAL NWP MODEL

Figures 6 and 7 showed the ROC curves for
classifying yes/no icing and moderate or above icing
respectively using FIP calculated from global NWP
model parameters. The corresponding thresholds (and
associated AUC given in brackets) are 0.29 (0.87) and
0.32 (0.77). The linear relationship between FIP derived
from global NWP model and reported icing severity was
not statistically significant.

FIG. 6. ROC curve for classifying icing cases (yes/no
icing) using FIP derived from global NWP model
(ECMWF).

2) REGIONAL NWP MODEL

Figures 8 and 9 showed the ROC curves for
classifying yes/no icing and moderate or above icing
respectively using FIP calculated from regional NWP
model parameters. The corresponding thresholds (AUC)
are 0.30 (0.82) and 0.35 (0.72). The linear relationship
between FIP derived by regional NWP model and
reported icing severity was not statistically significant.

The performance of FIPs derived from global and
regional NWP models is very similar as shown in Table 2
in terms of CSI (around 0.6). Regional FIP has slightly
higher POD compared to global FIP.

FIG. 7. ROC curve for classifying moderate or above
icing cases using FIP derived from global NWP model
(ECMWF).

FIG. 8. ROC curve for classifying icing cases (yes/no
icing) using FIP derived from regional NWP model (HKO-
WRF).

FIG. 9. ROC curve for classifying moderate or above
icing cases using FIP derived from regional NWP model
(HKO-WRF).
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FIP ≥ 0.3 POD FAR CSI

derived from global NWP
model (ECMWF)

0.679 0.171 0.595

derived from regional NWP
model (HKO-WRF)

0.709 0.189 0.608

TABLE 2. Skill scores for FIPs derived from global and
regional NWP models.

6.2. Icing occurrence probability

1) GLOBAL NWP MODEL

Ng (2023) presented that ROC curves for FIP and
icing occurrence probability derived from global NWP
model were very similar. Also, the linear relationship
between icing occurrence probability derived from global
NWP model and reported icing severity was not
statistically significant.

2) REGIONAL NWP MODEL

Four icing occurrence probability models were trained
based on training dataset used:

• caac prob: CAAC PIREPs
• combined prob: CAAC PIREPs and ARS
• caac (MOD+) prob: CAAC PIREPs that reported

moderate or above severity
• combined (MOD+) prob: CAAC PIREPs and ARS

that reported moderate or above severity

Figures 10 and 11 showed the ROC curves for
classifying yes/no icing and moderate or above icing
respectively. The corresponding thresholds (AUC) for the
four models to classify yes/no icing are 0.61 (0.88), 0.57
(0.92), 0.42 (0.90) and 0.63 (0.92). And that for
classifying moderate or above icing cases are 0.46
(0.74), 0.61 (0.85), 0.40 (0.82) and 0.58 (0.90).

FIG. 10. ROC curve for classifying icing cases (yes/no
icing) using icing occurrence probability derived from
regional NWP model (HKO-WRF).

FIG. 11. ROC curve for classifying moderate or above
icing cases using icing occurrence probability derived
from regional NWP model (HKO-WRF).

Although Figures 10 and 11 showed AUCs for
combined (MOD+) prob are greatest, Figure 12 showed
that the median for severe cases was lower than that for
moderate cases. Considering both AUC and linear trend
in probability against icing severity, caac (MOD+) prob
managed to provide the most reasonable classification
thresholds for icing severity (light vs MOD+ categories).

FIG. 12. Boxplots of icing occurrence probability derived
from regional NWP model against observed severity.

6.3. Icing risk level

With FIP denoting meteorological condition favourable
for icing and icing occurrence probability provided by
XGBoost, this section explored icing risk level
constructed by multiplying FIP with icing occurrence
probability.
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1) GLOBAL NWP MODEL

Since FIP and icing occurrence probability derived
from the global NWP model did not show linear trend
against icing severity, the icing risk did not show linear
relationship with reported icing severity.

2) REGIONAL NWP MODEL

The corresponding thresholds (AUC) for the icing risk
derived from caac (MOD+) prob model to classify yes/no
icing is 0.27 (0.86) and that for classifying moderate or
above icing cases is 0.41 (0.78). The thresholds
obtained are more distinguishable compared to
coorresponding thresholds derived from probability by
caac (MOD+) prob model. In addition, the linear
regression for icing risk against icing severity has
significant positive slope being 0.283 with standard error
0.017 (Figure 13). Therefore, icing risk derived from
caac (MOD+) prob model could potentially inform users
of the impact of icing condition and icing severity (light vs
MOD+ categories).

FIG. 13. Boxplots of icing risk derived from regional NWP
model against observed severity.

7. DISCUSSIONS

This study showed that interest functions for
constructing FIP would require adjustment based on
regional observations for both global and regional NWP
models. The icing occurrence probability by either global
or regional NWP models had good AUC diagnostics for
icing occurrence threshold, while the icing occurrence
probability by regional NWP model (HKO-WRF) was
positively correlated with icing severity.

Constructing icing risk via FIP and icing occurrence
probability was also explored in this study. The idea is
that FIP could provide the extend to which the
meteorological condition favours airframe icing and icing
occurrence probability was the likelihood of airframe

icing learnt by XGBoost models. Statistically, icing risk
derived from regional NWP model (HKO-WRF) was
more positively correlated with icing severity compared
to that from global NWP model.

FIG. 14. For each observed icing severity level,
normalised density is plotted for FIP against icing
occurrence probability derived from regional model.

As shown in Table 1 and Figure 14, risk level is not
simply linearly related to icing severity as there might be
low to moderate risk for high FIP with unlikely
occurrence. Therefore, icing risk might provide an useful
overview of icing impact or summary of FIP and icing
occurrence probability for specific locations, e.g.
common way points for major flight routes, or small
areas, such as holding areas. On the other hand,
referencing both FIP and icing occurrence probability
might provide a better spatial consideration for
forecasting airframe icing hazard as combining FIP and
icing occurrence probability into icing risk would collapse
the two-dimension risk matrix information into a
one-dimension information (the three colours: red,
orange, and green).
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