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The rapid rise of deep learning (DL) in numerical
weather prediction (NWP) has led to a proliferation of
models which forecast atmospheric variables with compa-
rable or superior skill than traditional physics-based NWP.
However, among these leading DL models, there is a wide
variance in both the training settings and architecture used.
Further, the lack of thorough ablation studies makes it hard
to discern which components are most critical to success.
In this work, we show that it is possible to attain high fore-
cast skill even with relatively off-the-shelf architectures ,
simple training procedures, and moderate compute bud-
gets. Specifically, we train a minimally modified SwinV2
transformer on ERA5 data, and find that it attains superior
forecast skill when compared against IFS. We present some
ablations on key aspects of the training pipeline, explor-
ing different loss functions, model sizes and depths, and
multi-step fine-tuning to investigate their effect. We also
examine the model performance with metrics beyond the
typical ACC and RMSE, and investigate how the perfor-
mance scales with model size.

1. INTRODUCTION

As the impacts of climate change continue to grow in
severity, it is becoming more important than ever to fore-
cast weather phenomena with high accuracy and fidelity.
While operational forecasting has long been performed
by numerical weather prediction (NWP) models like the
Integrated Forecast System (IFS), the availability of high-
quality reanalysis data (Hersbach et al. 2020) and the onset
of advanced deep learning techniques has led to a pro-
liferation of data-driven forecast models in recent years.
The power of deep learning in weather prediction has pro-
gressed rapidly, producing models that compete with or
outperform leading NWP systems in key forecast metrics
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(Lam et al. 2023; Bi et al. 2023) only 4 years after the earli-
est pioneering works (e.g., Dueben and Bauer 2018). This,
combined with the fact that deep learning weather models
offer unique capabilities that can augment the capabilities
of NWP (Ben-Bouallegue et al. 2023), has generated sub-
stantial interest in how to design the most effective deep
learning approaches for weather prediction.

Recent literature has proposed an abundance of training
recipes, network architectures, inference configurations,
and compute budgets for the task of global medium-range
forecasting. Proposed architectures range from graph neu-
ral networks (Keisler 2022; Lam et al. 2023), transformers
(Bi et al. 2023; Chen et al. 2023a,b; Nguyen et al. 2023),
neural operators (Pathak et al. 2022; Bonev et al. 2023), and
convolutional neural networks (Karlbauer et al. 2023); the
training recipes include different loss functions, normal-
ization methods, time-stepping schemes, and varied sets
of atmospheric variables and resolutions/grids. Expand-
ing beyond just deterministic forecasting and conventional
deep learning, other works have also explored diffusion
models (Price et al. 2023) and hybrid physics-ML schemes
(Kochkov et al. 2023). This progress, while exciting, also
presents a challenge for researchers, as the differences be-
tween models are multifold and sometimes entangled, so
separating their effects is not always possible. While some
works present ablations and analysis on parts of their mod-
els, it is challenging to do so comprehensively, and there
remains a need for analysis under restricted and controlled
settings.

With the advent of open benchmarks providing de-
tailed and informative model evaluation (Rasp et al. 2023;
Brenowitz et al. 2024), comparisons between and within
models are becoming easier, and the recent Stormer model
(Nguyen et al. 2023) exemplifies what can be done with ex-
tensive ablation studies. Their work takes a standard Vision
Transformer (ViT) and explores the impact of key compo-
nents of the training pipeline and model architecture on
the downstream performance of the model, assessed by the
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root-mean-square-error (RMSE) of deterministic forecasts
for key weather variables. Their improvements achieve
highly competitive accuracy when compared against other
leading models at ∼ 1.4◦ resolution.

In this work, we take a similar approach and aim to
assess the effect of different training settings, and the in-
terplay between them, but at full ERA5 resolution (0.25◦).
The decision to work at full resolution is motivated by the
fact that high-resolution forecasts are simply more useful,
and that excessive blurring and lack of fine-scale detail
is a current shortcoming of current deep-learning-based
models (Ben-Bouallegue et al. 2023; Price et al. 2023;
Brenowitz et al. 2024). We choose the SwinV2 (Liu et al.
2022) architecture as a representative transformer-based
architecture that works well at high resolutions, and is a
relatively “off-the-shelf” architecture widely available in
deep learning libraries. With SwinV2, we explore sev-
eral different aspects of the training pipeline. We do not
aim to provide a comprehensive analysis of all proposed
training strategies, but focus on what can achieve good de-
terministic skill at full ERA5 resolution on 1-5 day lead
times. This focus is partly motivated by observations that
multi-step fine-tuning and other methods that most improve
skill at long lead times exacerbate the issue of blurring, as
model predictions tend to resemble more of an ensemble
mean rather than a deterministic forecast (Price et al. 2023;
Brenowitz et al. 2024). Our contributions are as follows:

• We present a minimally modified SwinV2 model
trained on ERA5 at full 0.25◦ resolution that out-
performs IFS in deterministic skill.

• We present detailed ablations over key training
and model settings, finding the effects of latitude-
weighting, channel-weighting, and multi-step fine-
tuning to be somewhat entangled; they are generally
positive but not always constructive or additive with
each other.

• We confirm that multi-step fine-tuning can improve
RMSE but affect sharpness and ensemble spread in
transformer architectures as well.

2. DATASET & MODEL DETAILS

a. Data

We use the ERA5 (Hersbach et al. 2020) dataset, pro-
vided by ECMWF (European Center for Medium-Range
Weather Forecasting). ERA5 contains hourly reanalysis
data at a spatial resolution of 0.25◦ (∼ 25 km) from years
1979 to present day. For this study we subsample ERA5
on Δ𝑡 = 6 hour time intervals, and select 73 variables from
the full dataset to include in the model (this closely follows
previous work, e.g. Nguyen et al. (2023); Bi et al. (2022)).
These are geopotential height (z), winds (u, v), tempera-
ture (t), and specific humidity (q) at 13 vertical pressure

levels (50hPa, 100hPa, 150hPa, 200hPa, 250hPa, 300hPa,
400hPa, 500hPa, 600hPa, 700hPa, 850hPa, 925hPa, and
1000hPa), along with 8 single-level/surface variables: sur-
face winds at 10m and 100m (u10, v10, u100, v100), 2m
temperature (t2m), surface pressure (sp), mean sea level
pressure (msl), and total column water vapor (tcwv). We
also include as static additional inputs the land-sea mask,
orography, and cosine of zenith angle (indicating time of
day/year). As mentioned in the previous section, we fo-
cus on results at full ERA5 resolution and thus do not
downsample the data as in Nguyen et al. (2023). All data
is normalized by the global mean and standard deviation
per variable before training. We use years 1979-2015 as
well as 2019 for training data, and 2016-17 for validation,
then evaluate on 2018 in line with other recent DL-based
forecast models.

b. Model Architecture

We base our model on the SwinV2 (Liu et al. 2022)
implementation available in v0.9.2 of the timm library1.
While other DL-based forecast models have made exten-
sive modifications to Swin backbones (Bi et al. 2023; Chen
et al. 2023b), we find it sufficient to just minimally modify
two aspects of the SwinV2 architecture:

• Window shifting: The shifting of attention windows
in Swin is implemented as a torch.roll operation,
followed by masking to ensure attention within shifted
windows doesn’t cross image boundaries (since 2D
images are non-periodic generally). In the case of
ERA5, rolling along the horizontal (zonal) direction
is fine, since this axis is periodic, so we only apply the
masking along the vertical dimension. This slightly
simplifies the SwinV2 code.

• Position embedding: In SwinV2 the position biases
within attention windows are carefully defined in a
relative coordinate system, to better allow transferring
across multiple resolutions/window sizes. In our case
we are restricting ourselves to data at fixed resolution,
and thus find it sufficient to drop the relative position
embeddings in favor of a standard “absolute” position
embedding as in a standard ViT, which is added to the
latent space immediately after patch embedding.

• Non-hierarchical structure: SwinV2 uses a com-
mon vision transformer technique to incorporate a
hierarchy across the network layers that sequentially
merges patches and decreases resolution in order to
both reduce computational cost and model various
scales. We alter the model to be non-hierarchical
and maintain the same feature resolution in all layers,
which has shown to be effective for spatiotemporal
forecasting in earth science (Gao et al. 2022).

1https://github.com/huggingface/pytorch-image-models
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With these modifications we train our forecast models in
the standard setting, giving the state X𝑡 as input and predict-
ing the next state X𝑡+Δ𝑡 . In inference, the model is rolled out
autoregressively to produce forecasts for lead times larger
than Δ𝑡. For our baseline SwinV2 model we use an em-
bedding dimension of 768, depth of 12 layers, patch size of
4, 8 attention heads, and local attention window size 9x18.
The model is trained with latitude-weighted (described in
the following section) L2 loss using the Adam optimizer
with a DropPath rate of 0.1, learning rate of 0.001, and
batch size of 64, and trains for 70 epochs on 64 A100
GPUs. Activation checkpointing is used as necessary to fit
fine-tuning configurations into GPU memory. Modifica-
tions and ablations with respect to this baseline model are
described in subsequent sections.

c. Ablations & Experiments

Model size: In preliminary experimentation we found
that, for a given embedding dimension and depth, the
largest possible window size and smallest patch sizes per-
formed best. Thus to probe the effect of larger model sizes,
we explore growing both the depth and width dimensions.
We evaluate the performance of a model with twice as
many layers (depth=24), as well as double the embedding
dimension (embed dim=1536).

Channel weighting: Recent work has found it beneficial
to carefully weight channels (different weather variables at
different vertical levels) in the loss function during train-
ing (Nguyen et al. 2023). In particular, the method first
pioneered by Lam et al. (2023) of down-weighting as pres-
sure level decreases (higher vertical levels are weighted
less) and down-weighting according to the standard de-
viation of temporal differences (𝜎𝛿X) has been found to
work well. Beyond these physically-motivated weights,
Lam et al. (2023) also manually impose weights that pref-
erentially emphasize certain surface variables, like t2m,
which we adopt as well for consistency. Similar to Nguyen
et al. (2023) we evaluate the effect of this configuration
compared against the standard loss where all channels are
given equal weight.

We note this experiment is also entangled with “di-
rect” vs. “residual” prediction – the channel-weighting
method, which partially weights according to the tempo-
ral differences (𝜎𝛿X), predicts the difference between the
input and target timesteps, whereas the standard L2 loss
directly predicts the target timestep. In this work we do
not explore disentangling these two configurations, but in
principle one could separately apply pressure-level/𝜎𝛿X
and direct/residual prediction.

Multi-step fine-tuning: Implemented in many works,
(Pathak et al. 2022; Lam et al. 2023; Bonev et al. 2023;
Nguyen et al. 2023; Chen et al. 2023b), this method aims
to improve long-term forecast performance by optimizing
the loss over multiple (autoregressive) timesteps. While

this improves deterministic RMSE at longer lead times, it
has also been found to adversely affect forecast sharpness
and ensemble spread (Price et al. 2023; Brenowitz et al.
2024). We evaluate the effects of fine-tuning models with
4 and 8 timesteps to build upon the observations found in
previous works. Fine-tuning is done at a reduced learning
rate of 1e-4 for 15 epochs.

Latitude-weighting: A large number of works, dating
back to the original WeatherBench baseline Rasp et al.
(2020), have additionally weighted the loss according to
the cosine of each grid cell’s latitude. This is motivated by
the spherical geometry, and compensates for the difference
in area between cells near the poles versus the equator in
the equiangular projection. We examine the performance
of models with and without this weighting applied, though
it is applied by default if unspecified.

d. Evaluation

We use the recent open-source earth2mip package2

(Brenowitz et al. 2024) to score and evaluate models.
Scores are averaged over 11 initial conditions evenly spaced
throughout 2018, and forecasts are rolled out to 7 days at
6 hour intervals. We primarily focus on latitude-weighted
deterministic RMSE to compare between different mod-
els, but doing so imposes trade-offs with other metrics
and desirable aspects of forecast quality (e.g. sharp-
ness/bluriness). Thus we additionally measure energy
spectra and the ensemble spread/skill in a lagged-ensemble
(Tracton and Kalnay 1993) forecast for some of our models,
to further illuminate these trade-offs.

3. RESULTS

a. Model size, channel weighting, & multi-step fine-tuning

We examine variations of model size and the effect on
forecast skill in Figure 1. While doubling the embedding
dimension or depth improves performance generally, the
model variant with increased embedding dimension con-
sistently outperforms the deeper model at all lead times.
The deeper variant struggles to beat the baseline in t2m and
u10, and the gap between it and the model with larger em-
bedding dimension becomes as large as 10-15% in RMSE
at 7-day lead times.

In Figure 2 we compare the baseline configuration
against a model trained with channel-weighted loss and
confirm that the channel-weighting seems to improve the
model’s forecasting accuracy across the majority of lead
times. For some variables (e.g., u10) the improvement
is more apparent at later lead times. We note the im-
provement is present even in variables which are actually
down-weighted by the loss (e.g., z500, which is weighted
less since it is further from the surface).

2https://github.com/NVIDIA/earth2mip

https://github.com/NVIDIA/earth2mip


4

0 50 100 150
Lead Time (hours)

0

100

200

300

400

500

600

RM
SE

Channel: z500
swin_depth12_embed768
swin_depth12_embed1536
swin_depth24_embed768

0 50 100 150
Lead Time (hours)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

Channel: t2m

0 50 100 150
Lead Time (hours)

0

1

2

3

4

RM
SE

Channel: u10m

Fig. 1. Caption
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Fig. 2. RMSE comparison of forecasts at lead times up to 7 days for the baseline depth 12 and embedding dimension 768 swin model with and
without custom channel-weighting

In Figure 3 we show the effect of multi-step fine-tuning
and channel-weighting simultaneously applied, finding it
effective in improving RMSE as previous works have
shown. The overall effect seems to be that multi-step
fine-tuning improves performance most at lead times much
larger than the fine-tuning window. For example, up to lead
times of ∼2-3 days, there is no benefit from fine-tuning up
to 8 steps (48 hours) versus just 4 (24 hours) – both im-
prove over the baseline by the same amount. However, at
lead times of 5 days and beyond, the gap between the two
fine-tuning configurations has increased substantially and
the 8-step model performs much better.

b. Downstream effects of multi-step fine-tuning

Given the stark improvement in RMSE offered by multi-
step training, it is worth reiterating that these improvements

come at the cost of other qualities desirable in weather
models: forecast sharpness and ensemble spread. As a
quick demonstration, we show in Figure 4 the power spec-
tra of model predictions compared against the ground truth
ERA5 (averaged over all lead times and initial conditions).
The multi-step fine-tuned models are clearly deficient in
higher wavenumbers for u10, indicating blurring. This
effect is not present in all variables, as seen in the spec-
tra for, e.g. surface temperature, whose fine-scale power
might be more dominated by (static) orographic features
like mountain ranges and coastlines rather than dynamics.
The spikes and pileup near Nyquist frequency are caused
by the patch embedding in SwinV2.

We examine spread and performance of an ensemble
constructed from lagged forecasts in Figure 5. The lagged
ensemble procedure and motivation is described in detail
by Brenowitz et al. (2024), but generally we can expect
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that models which are more intrinsically more dispersive
(i.e., create ensembles with larger spread) to have a larger
spread/skill ratio, which should ideally be 1 for an op-
timal real-world ensemble. In Figure 5 we observe that
indeed the spread-skill ratio is diminished for both multi-
step fine-tuned models, confirming the issues presented in
Brenowitz et al. (2024). This decrease in spread-skill ratio
is not catastrophic, as there still appears to be ensemble
skill gains from fine-tuning as shown in ensemble mean
RMSE and CRPS in the first and third rows respectively.
In particular, the 8-step fine-tuned model has better skill
at all lead times than the baseline for all three variables in
both metrics.

c. Effects of latitude-weighted loss

Though the previous results have all incorporated the
latitude-weighted loss, in Table 1 we examine this choice
more closely and compare across several model config-
urations with and without applying latitude-weighting.
The results are mixed, highlighting the need for caution
when drawing conclusions from just one or two experi-
ments alone. For the 8-step fine-tuned model, the latitude-
weighted loss is generally helpful and achieves the lowest
RMSE at lead times of 2 and 4 days (at 7-days the RMSE
is roughly the same with and without latitude-weighting),
with the best overall configuration using both channel-
weighting and latitude-weighting in the loss. Surprisingly,
the conclusion is reversed for a model that is only trained
over single-step predictions – the latitude-weighted loss
does significantly poorer at all lead times, and the best
configuration uses neither channel-weighting nor latitude-
weighting. Thus the effects of channel-weighting, latitude-
weighting, and multi-step training are entangled; since it is
common practice to do more hyperparameter tuning using
less expensive configurations first (e.g., tune 1-step train-
ing first and then apply multi-step training) this can cause
problems during the model development process.

Table 1. RMSE for Z500 (m) at 2,4,and 7 day forecast lead
times for different model configurations trained with and without
latitude-weighted loss. All models have depth 12 and 768 embed-
ding dimension. The best results for 1-step and 8-step training are
highlighted in bold.

Channel
weighting

# step
training

Latitude-
weighted

Z500
(2day)

Z500
(4day)

Z500
(7day)

– 1 – 95.74 237.36 549.18
– 1 ✓ 134.29 299.96 652.52
✓ 1 – 102.31 261.08 572.33
✓ 1 ✓ 106.94 253.72 589.08

– 8 – 85.48 218.65 503.28
– 8 ✓ 84.01 217.19 507.65
✓ 8 – 88.48 227.77 505.18
✓ 8 ✓ 83.20 216.66 503.93

d. Additional experiments

Beyond this main set of experiments, we also partially
explore other methods proposed in the literature, but do
not run complete ablation suites due to the initially poor
performance we observe. In particular, we attempt to use
the variable tokenization embedding (Nguyen et al. 2023),
which uses a cross-attention operation to fuse informa-
tion between variables after patch embedding. This had
previously only been demonstrated on much coarser reso-
lution, and we find that applying it to full 0.25◦ resolution
data poses significant computational challenges due to the
memory cost. With activation checkpointing and breaking
the operation to run in chunks sequentially, we are able
to get it to fit on 80GB A100s, but we observe a slight
degradation in the training and validation loss, contrary to
the observations of (Nguyen et al. 2023). Since the check-
pointing and chunked computation significantly increases
the runtime, we do not pursue this further.

We also explore the alternate negative log likelihood
(NLL) loss from (Chen et al. 2023a), which down-weights
the loss according to a network-predicted uncertainty. Ini-
tial experiments under this configuration showed the 1-step
RMSE on the validation set lagging behind the baseline
configuration, and the predictions were noticeably more
blurry. Thus we did not find this configuration worth in-
cluding in more extensive ablations.

e. Comparison with IFS

Three of the top performing models from this work are
compared with the IFS deterministic forecasts for 2018 in
Figure 6. The IFS forecasts are done using 668 initial times
which include the 11 initial times from our analysis. We
see both the 8-step fine-tuned models, one with channel-
weighting and latitude-weighted loss and one without, out-
perform the deterministic IFS forecast at all displayed lead
times in terms of RMSE for z500, t2m, and u10m. The
higher embedding dimension model trained only on single-
step prediction only outperformed IFS on most lead times
(at shorter and longer ends of the range) for z500, on all
but the lead times over 6 days for t2m, and all lead times
for u10m.

4. Conclusions

In this work we have demonstrated that relatively off-
the-shelf architectures can outperform IFS and achieve
highly competitive forecast skill with the proper training
procedure. We find that increasing model size, applying
channel weighting in the loss, and training over multiple
time steps all improve deterministic forecast skill. We also
see the effectiveness of the latitude-weighted loss to vary
across different configurations, finding it more effective
when used in conjunction with multi-step training. We
confirm that multi-step training can also adversely affect
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Fig. 3. RMSE comparison of forecasts at lead times up to 7 days for the model trained with custom channel-weighting, depth 12, and embedding
dimension 768 alongside its variants with 4 and 8-step fine tuning
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forecast sharpness and ensemble spread, highlighting the
need for other methods to stabilize rollouts and improve de-
terministic skill. We find some other innovations proposed
in previous literature to either be ineffective in our setting
or infeasible at full ERA5 resolution. Since our models are
trained with moderate compute budgets (e.g., a total of 48
hours on 64 A100 GPUs for pre-training and fine-tuning
the base model), we hope these models and findings will
be of great practical use to the community.
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